Skip to main content
Log in

Dynamic dielectric properties of isotactic polypropylene-g-maleic anhydride crosslinked by capped-end polyether diamine and filled with native or functionalized nano-graphite particles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Dynamic dielectric properties of an isotactic polypropylene matrix grafted with maleic anhydride (CA 100) and then crosslinked by polyether amine molecules and reinforced with different weight percentages of graphite nanoplatelets (GNPs), KNG180, were studied for the first time and compared to those obtained by DMA (Dynamic Mechanical Analysis). The main objective of this work was to investigate the reinforcement effect of GNPs focusing on the GNPs/matrix interfacial adhesion using dynamic dielectric relaxation spectroscopy in the frequency range from 0.1 Hz to 1 MHz and temperature range from 20 to 140 °C. The obtained interfacial polarization increments \({\Delta \varepsilon }_{\mathrm{MWS}}\) from MWS (Maxwell Wagners Sillars) relaxation showed a threshold value of 3% in weight of KNG180. This analysis suggests that interfacial compatibility between matrix and fillers in the case of nanocomposite KNG180 3 wt% is higher than those of other nanocomposites. A new plasma treatment was used to modify graphite nano-fillers to produce different types of nanocomposites. The 5 wt% plasma treated graphite nanocomposite shows a good dispersion of the nano-fillers but also a high value of \({\Delta \varepsilon }_{\mathrm{MWS}}\), which is an indication of high graphite/graphite interaction. This evolution could show that this material can be close to the formation of an electrical percolation network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang D, Zhang X, Zha J et al (2013) Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54:1916–1922. https://doi.org/10.1016/j.polymer.2013.02.012

    Article  CAS  Google Scholar 

  2. Létoffé A, García-Rodríguez SM, Hoppe S et al (2019) Switching from brittle to ductile isotactic polypropylene-g-maleic anhydride by crosslinking with capped-end polyether diamine. Polymer 164:67–78. https://doi.org/10.1016/j.polymer.2019.01.015

    Article  CAS  Google Scholar 

  3. Ha C, Cho Y, Go J et al (2000) Dynamic mechanical properties of polypropylene-g-maleic anhydride and ethylene–propylene–diene terpolymer blends: effect of blend preparation methods. J Appl Polym Sci 77:2777–2784. https://doi.org/10.1002/1097-4628(20000919)77:12

    Article  CAS  Google Scholar 

  4. Agrebi F, Ghorbel N, Ladhar A et al (2017) Enhanced dielectric properties induced by loading cellulosic nanowhiskers in natural rubber: Modeling and analysis of electrode polarization. Mater Chem Phys 200:155–163. https://doi.org/10.1016/j.matchemphys.2017.06.058

    Article  CAS  Google Scholar 

  5. Rekik H, Ghallabi Z, Royaud I et al (2013) Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Compos Part B 45:1199–1206. https://doi.org/10.1016/j.compositesb.2012.08.002

    Article  CAS  Google Scholar 

  6. Létoffé A, Hoppe S, Lainé R et al (2019) Resilience improvement of an isotactic polypropylene-g maleic anhydride by crosslinking using polyether triamine agents. Polymer 179:121655. https://doi.org/10.1016/j.polymer.2019.121655

    Article  CAS  Google Scholar 

  7. Lara A, Létoffé A, Hoppe S et al (2020) Elaboration and characterization of an isotactic polypropylene-g-maleic anhydride crosslinked by a bis(amino)-calix[4]arene derivative. J Appl Polym Sci 138:49889. https://doi.org/10.1002/app.49889

    Article  CAS  Google Scholar 

  8. Novais RM, Covas JA, Paiva MC (2012) The effect of flow type and chemical functionalization on the dispersion of carbon nanofiber agglomerates in polypropylene. Compos Part A 43:833–841. https://doi.org/10.1016/j.compositesa.2012.01.017

    Article  CAS  Google Scholar 

  9. Butylina S, Hyvärinen M, Kärki T (2012) A study of surface changes of wood-polypropylene composites as the result of exterior weathering. Polymer Degradation stability 97:337–345. https://doi.org/10.1016/j.polymdegradstab.2011.12.014

    Article  CAS  Google Scholar 

  10. Jeffamines® Polyetheramines, Technical Specifications Sheet by Hunstman.

  11. Létoffé A, Cuynet S, Noel C et al (2022) Functionalisation and exfoliation of a nano-graphite with low temperature pulse plasma in distilled water. Phys Chem Chem Phys 24:5578–5589. https://doi.org/10.1039/d1cp04826k

    Article  CAS  PubMed  Google Scholar 

  12. Ozkazanc E, Zor S, Ozkazanc H et al (2012) Synthesis, characterization and dielectric behavior of (ES)-form polyaniline/cerium(III)-nitrate-hexahydrate composites. Mater Chem Phys 133:356–362. https://doi.org/10.1016/j.matchemphys.2012.01.037

    Article  CAS  Google Scholar 

  13. Sarkar A, Ghosh P, Meikap AK et al (2008) Electrical-transport properties of iodine-doped conducting polyaniline. J Appl Polym Sci 108:2312. https://doi.org/10.1002/app.27615

    Article  CAS  Google Scholar 

  14. Qi YN, Xu F, Ma HJ et al (2008) Thermal stability and glass transition behavior of PANI/MWNT composites. J Therm Anal Calorim 91:219. https://doi.org/10.1007/s10973-008-8978-2

    Article  CAS  Google Scholar 

  15. Arous M, Ben Amor I, Boufi S et al (2007) Experimental study on dielectric relaxation in alfa fiber reinforced epoxy composites. J Appl Polym Sci 106:3631–3640. https://doi.org/10.1002/app.26885

    Article  CAS  Google Scholar 

  16. Ladhar A, Arous M, Kaddami H et al (2014) Molecular dynamics of nanocomposites natural rubber/cellulose nanowhiskers investigated by impedance spectroscopy. J Mol Liq 196:187–191. https://doi.org/10.1016/j.molliq.2014.03.040

    Article  CAS  Google Scholar 

  17. Addiego F, Dahoun A, G’Sell C et al (2006) Characterization of volume strain at large deformation under uniaxial tension in high-density polyethylene. Polymer 47:4387–4399. https://doi.org/10.1016/j.polymer.2006.03.093

    Article  CAS  Google Scholar 

  18. Potts JR, Dreyer DR, Bielawski CW et al (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25. https://doi.org/10.1016/j.polymer.2010.11.042

    Article  CAS  Google Scholar 

  19. Gulrez SKH, Mohsin MEA, Shaikh H et al (2013) A review on electrically conductive polypropylene and polyethylene. Polym Compos 35:900–914. https://doi.org/10.1002/pc.22734

    Article  CAS  Google Scholar 

  20. Havriliak S, Negami S (1966) A complex plane analysis of a-dispersions in some polymer systems. J Polym Sci Part C 14:99–117. https://doi.org/10.1002/polc.5070140111

    Article  Google Scholar 

  21. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210. https://doi.org/10.1016/0032-3861(67)90021-3

    Article  CAS  Google Scholar 

  22. Ridhore A, Jog JP (2012) A dynamic mechanical and dielectric relaxation study of PP-g-MAH/ clay nanocomposites. Open Macromol J 6:53–58. https://doi.org/10.2174/1874343901206010053

    Article  CAS  Google Scholar 

  23. Bettini SHP, Agnelli JAM (2002) Grafting of maleic anhydride onto polypropylene by reactive extrusion. J Appl Polym Sci 85:2706–2717. https://doi.org/10.1002/app.10705

    Article  CAS  Google Scholar 

  24. Motori A, Montanari G, Saccani A et al (2007) Electrical conductivity and polarization processes in nanocomposites based on isotactic polypropylene and modified synthetic clay. J Polym Sci Part B Polym Phys 45:705–713. https://doi.org/10.1002/polb.21091

    Article  CAS  Google Scholar 

  25. Bohning M, Goering H, Fritz A et al (2005) Dielectric study of molecular mobility in poly (propylene-graft-maleic anhydride)/clay nanocomposites. Macromolecules 38:2764–2774. https://doi.org/10.1021/ma048315c

    Article  CAS  Google Scholar 

  26. Jin X, Zhang S, Runt J (2002) Observation of a fast dielectric relaxation in, semicrystalline poly(ethylene oxide). Polymer 43:6247–6254. https://doi.org/10.1016/S0032-3861(02)00560-8

    Article  CAS  Google Scholar 

  27. Havriliak S, Havriliak SJ (1996) Comparaison of the Havriliak-Negami and stretched exponential functions. Polymer 37:4107–4110. https://doi.org/10.1016/0032-3861(96)00274-1

    Article  CAS  Google Scholar 

  28. Triki A, Guicha M, Ben Hassen M et al (2011) Studies of dielectric relaxation in natural fibres reinforced unsaturated polyester. J Mater Sci 46:3698–3707. https://doi.org/10.1007/s10853-010-5136-6

    Article  CAS  Google Scholar 

  29. Ladhar A, Arous M, Kaddami H et al (2017) Correlation between the dielectric and the mechanical behavior of cellulose nanocomposites extracted from the rachis of the date palm tree. In: Paper presented at the IOP conference series: materials science and engineering, vol 258, pp 012001. https://doi.org/10.1088/1757-899X/258/1/012001

  30. Chu K, Liu Y, Wang J et al (2018) Oxygen plasma treatment for improving graphene distribution and mechanical properties of graphene/copper composites. Mater Sci Eng A 735:398–407. https://doi.org/10.1016/j.msea.2018.08.064

    Article  CAS  Google Scholar 

  31. Mittal V (2016) Spherical and fibrous filler composites. Wiley, New York, p 8. https://doi.org/10.1002/9783527670222

    Book  Google Scholar 

  32. Zhou W, Li T, Yuan M, Li Bo, Dang Z-M (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater 42:1–11. https://doi.org/10.1016/j.ensm.2021.07.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Migot and J. Ghanbaja (CC3M, Jean Lamour Institute) for TEM analysis and the collaborators C. Hérold, G. Henrion and C. Noel for the GNP plasma treatment from IJL and S. Hoppe for the reactive extrusion process from LRGP. This work was partially supported by the internal and strategical project CoPoGraF of the Jean Lamour Institute and by a MESR grant of the French government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Royaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrebi, F., Letoffe, A., Kallel, A. et al. Dynamic dielectric properties of isotactic polypropylene-g-maleic anhydride crosslinked by capped-end polyether diamine and filled with native or functionalized nano-graphite particles. Polym. Bull. 80, 2815–2834 (2023). https://doi.org/10.1007/s00289-022-04171-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04171-9

Keywords

Navigation