Skip to main content
Log in

Molecular structural, optical analyses, and dielectric properties of PVDF/PVA-MK composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, pure metakaolin (MK) was prepared from kaolin using the heat treatment and added different contents of MK to PVDF/PVA blend to enhance the structural, optical, and electrical properties for PVDF/PVA-MK composites. The structure analysis has been studied by X-ray diffraction. After the addition of MK, an increase in the amorphous structure was observed in the composites because the MK reduced the crystallinity related to the interaction between PVDF/PVA blend and MK. The UV–Vis absorbance, transmittance and reflectance spectra were analyzed to determine absorption coefficient, indirect energy band gap, optical absorption coefficient, diffuse reflectance, and extinction coefficient. The increase in the extinction coefficient values was demonstrated with the increase in the amount of MK associated with energy loss and the reaction between light and medium molecules. The decrease in the band-gap values was demonstrated with the increases in the amount of MK to confirm the suitability of MK as a band gap regulated optical material in different applications. The dielectric permittivity, AC conductivity, and dielectric modulus were studied in details. The values of ε′ and ε″ were increased as an increase of MK content due to the high value of MK dielectric permittivity. The \({\sigma }_{\mathrm{ac}}\) values were increased as an increase of both frequencies and the addition of MK for all samples. The lower values of \({\sigma }_{\mathrm{ac}}\) were observed at the lower frequency due to the electrode polarization effect. The M″ relaxation peaks indicate a phase transition related to the transition from long-range to short-range ionic transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mohammed MI (2018) Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend. J Mol Struct 1169:9–17. https://doi.org/10.1016/j.molstruc.2018.05.024

    Article  CAS  Google Scholar 

  2. Elashmawi IS, Abdelrazek EM, Ragab HM, Hakeem NA (2010) Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine. Phys B Condens Matter 405:94–98

    Article  CAS  Google Scholar 

  3. Ma W, Zhang J, Wang X, Wang S (2007) Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions. Appl Surf Sci 253:8377–8388. https://doi.org/10.1016/j.apsusc.2007.04.001

    Article  CAS  Google Scholar 

  4. Indolia AP, Gaur MS (2013) Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J Polym Res. https://doi.org/10.1007/s10965-012-0043-y

    Article  Google Scholar 

  5. Panjaitan E, Manaf A, Soegijono B, Kartini E (2012) Effect of additional poly vinyledene fluoride (PVDF) on LiCoO2 cathodes. Procedia Chem 4:60–64. https://doi.org/10.1016/j.proche.2012.06.009

    Article  CAS  Google Scholar 

  6. Li W, Li H, Zhang YM (2009) Preparation and investigation of PVDF/PMMA/TiO2 composite film. J Mater Sci 44:2977–2984. https://doi.org/10.1007/s10853-009-3395-x

    Article  CAS  Google Scholar 

  7. Abdelrazek EM, Holze R (2011) Structural, optical and some physical properties of PVDF films filled with LiBr/MnCl2 mixed fillers. Phys B Condens Matter 406:766–770. https://doi.org/10.1016/j.physb.2010.11.077

    Article  CAS  Google Scholar 

  8. Elashmawi IS, Menazea AA (2019) Different time’s Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J Mater Res Technol 8:1944–1951. https://doi.org/10.1016/j.jmrt.2019.01.011

    Article  CAS  Google Scholar 

  9. Das L, Das P, Bhowal A, Bhattachariee C (2020) Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100664

    Article  Google Scholar 

  10. Elashmawi IS, Abdelrazek EM, Hezma AM, Rajeh A (2014) Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys B Condens Matter 434:57–63. https://doi.org/10.1016/j.physb.2013.10.038

    Article  CAS  Google Scholar 

  11. Singh DK, Yadav RR, Pandey DK (2009) Synthesis and nondestructive characterization of Cr 2O 3 nanoparticles-PVA suspensions. Adv Mater Res 67:259–264. https://doi.org/10.4028/www.scientific.net/AMR.67.259

    Article  Google Scholar 

  12. Ali FM, Yahia IS, Sayed MA (2019) Synthesis and optimization of a novel polymer: dye composite (PVA:MV-6B) films for band-stop optical filters. Optik (Stuttg) 192:1–10. https://doi.org/10.1016/j.ijleo.2019.06.002

    Article  CAS  Google Scholar 

  13. Wang J, Liang J, Sun L, Gao S (2019) PVA/CS and PVA/CS/Fe gel beads’ synthesis mechanism and their performance in cultivating anaerobic granular sludge. Chemosphere 219:130–139. https://doi.org/10.1016/j.chemosphere.2018.12.014

    Article  CAS  Google Scholar 

  14. Elashmawi IS, Hakeem NA, Abdelrazek EM (2008) Spectroscopic and thermal studies of PS/PVAc blends. Phys B Condens Matter 403:3547–3552. https://doi.org/10.1016/j.physb.2008.05.024

    Article  CAS  Google Scholar 

  15. Duxson P, Lukey GC, van Deventer JSJ (2006) Thermal evolution of metakaolin geopolymers: part 1—physical evolution. J Non Cryst Solids 352:5541–5555. https://doi.org/10.1016/j.jnoncrysol.2006.09.019

    Article  CAS  Google Scholar 

  16. Celik A, Yilmaz K, Canpolat O, Al-mashhadani MM, Aygörmez Y, Uysal M (2018) High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Constr Build Mater 187:1190–1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062

    Article  CAS  Google Scholar 

  17. Hui Yang J, Sheng Zhang Y, Xue F, Feng Liu D, Zhang N, Huang T, Wang Y (2021) Structural relaxation and dielectric response of PVDF/PMMA blend in the presence of graphene oxide. Polym (Guildf) 229:123998. https://doi.org/10.1016/j.polymer.2021.123998

    Article  CAS  Google Scholar 

  18. Calis G, Eneskpinar M, Yildizel SA, Tolgaöğürcü M (2021) Evaluation and optimization of PVA reinforced cementitious composite containing metakaolin and fly ash. Rev Rom Mater Rom J Mater 51:53–66

    Google Scholar 

  19. Tchakouté HK, Rüscher CH, Hinsch M, Djobo JNY, Kamseu E, Leonelli C (2017) Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chem Erde 77:257–266. https://doi.org/10.1016/j.chemer.2017.04.003

    Article  CAS  Google Scholar 

  20. Elashmawi IS, Abdelrazek EM, Ragab HM, Hakeem NA (2010) Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2009.08.037

    Article  Google Scholar 

  21. Ali FM (2019) Structural and optical characterization of [(PVA:PVP)-Cu2+] composite films for promising semiconducting polymer devices. J Mol Struct 1189:352–359. https://doi.org/10.1016/j.molstruc.2019.04.014

    Article  CAS  Google Scholar 

  22. Alibwaini YA, Hemeda OM, El-Shater R, Sharshar T, Ashour AH, Ajlouni AW, Arrasheed EA, Henaish AMA (2021) Synthesis, characterizations, optical and photoluminescence properties of polymer blend PVA/PEG films doped eosin Y (EY) dye. Opt Mater (Amst) 111:110600. https://doi.org/10.1016/j.optmat.2020.110600

    Article  CAS  Google Scholar 

  23. Sheha E, Khoder H, Shanap TS, El-Shaarawy MG, El Mansy MK (2012) Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik (Stuttg) 123:1161–1166. https://doi.org/10.1016/j.ijleo.2011.06.066

    Article  CAS  Google Scholar 

  24. Ali HE, Algarni H, Khairy Y (2020) Influence of cobalt-metal concentration on the microstructure and optical limiting properties of PVA. Opt Mater (Amst) 108:110212. https://doi.org/10.1016/j.optmat.2020.110212

    Article  CAS  Google Scholar 

  25. Paul Sharma J, Kumar P, Sharma K, Kumar M, Arora A, Kumar Singh P (2019) Optical and structural properties of drop-cast PVA/PEG polyblends. Mater Today Proc 34:705–709. https://doi.org/10.1016/j.matpr.2020.03.801

    Article  CAS  Google Scholar 

  26. Khairy Y, Mohammed MI, Elsaeedy HI, Yahia IS (2021) Optical and electrical properties of SnBr 2-doped polyvinyl alcohol (PVA) polymeric solid electrolyte for electronic and optoelectronic applications. Optik (Stuttg) 228:166129. https://doi.org/10.1016/j.ijleo.2020.166129

    Article  CAS  Google Scholar 

  27. Choudhary S (2017) Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. Compos Commun 5:54–63. https://doi.org/10.1016/j.coco.2017.07.004

    Article  Google Scholar 

  28. Sedky A, Afify N, Ali AM, Algarni H (2022) On the dielectric behaviors of Zn1−x−yFexMyO ceramics for nonlinear optical and solar cell devices. Appl Phys A Mater Sci Process 128:1–14. https://doi.org/10.1007/s00339-022-05260-2

    Article  CAS  Google Scholar 

  29. Alghunaim NS, Alhusaiki-Alghamdi HM (2019) Role of ZnO nanoparticles on the structural, optical and dielectric properties of PVP/PC blend. Phys B Condens Matter 560:185–190. https://doi.org/10.1016/j.physb.2019.02.021

    Article  CAS  Google Scholar 

  30. Lahlali S, Essaleh L, Belaqziz M, Chehouani H, Alimoussa A, Djessas K, Viallet B, Gauffier JL, Cayez S (2017) Dielectric and modulus analysis of the photoabsorber Cu2SnS3. Phys B Condens Matter 526:54–58. https://doi.org/10.1016/j.physb.2017.09.069

    Article  CAS  Google Scholar 

  31. Morsi MA, Asnag GM, Rajeh A, Awwad NS (2021) Nd:YAG nanosecond laser-induced growth of Au nanoparticles within CMC/PVA matrix: multifunctional nanocomposites with tunable optical and electrical properties. Compos Commun 24:17–20. https://doi.org/10.1016/j.coco.2021.100662

    Article  Google Scholar 

  32. Choudhary S (2017) Structural and dielectric properties of (PEO-PMMA)-SnO2 nanocomposites. Compos Commun 5:54–63

    Article  Google Scholar 

  33. Ramesan MT, Bijudas K (2016) Structural, thermal and electrical properties of in situ synthesised poly (methyl methacrylate)/stannous (II) chloride. J Chem Pharm Sci 1:52–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Alhusaiki-Alghamdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhusaiki-Alghamdi, H.M. Molecular structural, optical analyses, and dielectric properties of PVDF/PVA-MK composites. Polym. Bull. 80, 2137–2152 (2023). https://doi.org/10.1007/s00289-022-04167-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04167-5

Keywords

Navigation