Skip to main content
Log in

Self-assembly and thermal behavior of amphiphilic di-block copolymers of poly(methyl methacrylate)-block-poly(ethylene oxide) (PMMA-b-PEO)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two amphiphilic di-block copolymers with composition of PMMA118-b-PEO45 and PMMA25-b-PEO45 have been synthesized and characterized by NMR and FTIR spectroscopies. The critical micelle concentration (CMC) of synthesized copolymers in toluene has been determined. The variation in CMC of both polymers was recorded under the influence of temperature. Interestingly, it was found that CMC decreases with increase in the polymethyl methacrylate (PMMA) chain length and increase in temperature. A decrease in Gibbs free of micellization (ΔGmic) energy was found in the range of (− 17.3 to − 20.4), and increase in the entropy of micellization was observed in the range of (26.4 to 29.4) mol−1 at temperature in the range from 293 to 323 K with 10 K increment, while enthalpy is independent of temperature. From thermal analysis, it was concluded that degradation temperature slightly increases as the PMMA length increases. This is probably due to difficult diffusion of thermal energy across the entangled chains of PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hadjichristidis N, Stergios P, George F (2003) Block copolymers: synthetic strategies, physical properties, and applications. Wiley, Hoboken

    Google Scholar 

  2. Pizarro GD, Marambio OG, Henríquez CG, Vallejos MS, Geckeler KE (2013) Nanoreactors based on self-assembled amphiphilic diblock copolymers for the preparation of ZnO nanoparticles. Eur Polym J 49(11):3483–3491

    Article  CAS  Google Scholar 

  3. Ma X, Li Y, Wang W, Ji Q, Xia Y (2013) Temperature-sensitive poly(nisopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. Eur Polym J 49(2):389–396

    Article  CAS  Google Scholar 

  4. Nawaz M, Baloch MK, Price GJ, Din I, El-Mossalamy ESEB (2013) Synthesis, association and surface morphology of poly(ethylene oxide)-polystyrene block copolymer. J Polym Res 20:180

    Article  Google Scholar 

  5. Datta H, Bhowmick AK, Singha NK (2009) Methacrylate/acrylate ABA triblock copolymers by atom transfer radical polymerization; their properties and application as a mediator for organically dispersible gold nanoparticles. Polymer 50(14):3259–3268

    Article  CAS  Google Scholar 

  6. Xiaojun W, Monojoy G, Rajeev K, Bobby G, Jimmy M (2012) Morphologies of block copolymers composed of charged and neutral blocks. Soft Matter 8:3036–3052

    Article  Google Scholar 

  7. Xu J, Zhang Y, Zhang QA (2001) Novel approach to melt-processable molecular composites. Polymer 42(6):2689–2693

    Article  CAS  Google Scholar 

  8. Yang X, Chen Y, Yuan R, Chen G, Blanco E, Gao J, Shuai X (2008) Folate-encoded and Fe3O4 loaded polymeric micelles for dual targeting of cancer cells. Polymer 49(16):3477–3485

    Article  CAS  Google Scholar 

  9. Krishnamoorthy S, Pugin R, Pugin J, Heinzelmann H, Hoogerwerf AC, Hinderling C (2006) Block copolymer micelles as switchable templates for nanofabrication. Langmuir 22(8):3450–3452

    Article  CAS  Google Scholar 

  10. Geng Y, Ahmed F, Bhasin N, Discher DE (2005) Visualizing worm micelle dynamics and phase transitions of a charged diblock copolymer in water. J Phys Chem B 109(9):3772–3779

    Article  CAS  Google Scholar 

  11. Mark JE, Harry RA, Robert W (2005) Inorganic polymers. Oxford University Press, London

    Book  Google Scholar 

  12. Zhang Y, Zhang Q, Cheng K, Xu J (2004) A novel method for the preparation of monocarboxyl end-grouped polycaprolactam with an adjustable molecular weight. Appl Polym Sci 92(2):722–727

    Article  CAS  Google Scholar 

  13. Jungki K, Michelle MM, Robert WS, Dong JW, John MT (2006) Uniquely broad glass transition temperatures of gradient copolymers relative to random and block copolymers containing repulsive comonomers. Macromolecules 39(18):6152–6160

    Article  Google Scholar 

  14. Choucair A, Eisenberg A (2003) Interfacial solubilization of model amphiphilic molecules in block copolymer micelles. J Ameri Chem Soci 125(39):1993–2000

    Google Scholar 

  15. Varshosaz J, Hassanzadeh F, Sadeghi-Aliabadi H, Larian Z, Rostami M (2014) Synthesis of pluronic F127-poly(methyl vinyl ether-alt-maleic acid) copolymer and production of its micelles for doxorubicin delivery in breast cancer. Chem Eng J 240:133–146

    Article  CAS  Google Scholar 

  16. Suzuki T, Murakami Y, Takegami Y (1980) Synthesis and characterization of block copolymers of poly(ethylene oxide) and poly(methyl methacrylate). Polym J 12:183–192

    Article  CAS  Google Scholar 

  17. Hasegawa T (2017) Quantitative infrared spectroscopy for understanding of a condensed matter. Springer, Tokyo

    Book  Google Scholar 

  18. Schachtschneider JH, Snyder RG (1963) Vibrational analysis of the n-paraffins-II: normal co-ordinate calculations. Spectrochim Acta 19:117–168

    Article  CAS  Google Scholar 

  19. Vacatello M, Flory PJ (1986) Conformational statistics of poly(methyl methacrylate). Macromolecules 19:405–415

    Article  CAS  Google Scholar 

  20. Gao Z, Varshney SK, Wong S, Eisenberg A (1994) Block copolymer crew-cut micelles in water. Macromolecules 27(26):7923

    Article  CAS  Google Scholar 

  21. Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21(2):107–116

    Article  CAS  Google Scholar 

  22. Yuan J, Shi Y, Fu Z, Yang W (2006) Synthesis of amphiphilic poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymers by atom transfer radical polymerization. Polym inter 55(3):360

    Article  CAS  Google Scholar 

  23. Oikonomou EK, Pefkianakis EK, Bokias G, Kallitsis JK (2008) Direct synthesis of amphiphilic block copolymers, consisting of poly(methyl methacrylate) and poly(sodium styrene sulfonate) blocks through atom transfer radical polymerization. Eur Polym J 44(6):1857–1864

    Article  CAS  Google Scholar 

  24. Lin CH, Tung YC, Ruokolainen J, Mezzenga R, Chen WC (2008) Poly[2,7-(9,9-dihexylfluorene)]-block-poly(2-vinylpyridine) rod−coil and coil–rod–coil block copolymers: synthesis, morphology and photophysical properties in methanol/THF mixed solvents. Macromolecules 41(22):8759–8769

    Article  CAS  Google Scholar 

  25. Pramoda KP, Liu S, Chung TS (2002) Thermal imidization of the precursor of a liquid crystalline polyimide. Macromol Mater Eng 287(12):931

    Article  CAS  Google Scholar 

  26. Samia AK, Laila M, Al-Harbi LM, Baloch MK, Ullah I, El-Mossalamy EH (2016) Impact of block length and temperature over self-assembling behavior of block copolymers. Int J Polym Sci 2016:1–7

    Google Scholar 

  27. Zushun X, Lianzian F, Jian J, Shiyuan C, Yongchun C, Changfeng Y (2013) The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene. Eur Polym J 34(10):1499–1504

    Article  Google Scholar 

  28. Burke SE, Eisenberg A (2001) Effect of sodium dodecyl sulfate on the morphology of polystyrene-b-poly(acrylic acid) aggregates in dioxane-water mixtures. Langmuir 17(26):8341–8347

    Article  CAS  Google Scholar 

  29. Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417):1143

    Article  CAS  Google Scholar 

  30. Jenekhe SA, Chen XL (1999) Self-assembly of ordered microporous materials from rod–coil block copolymers. Science 283(5400):372–375

    Article  CAS  Google Scholar 

  31. Maria K, Stergios P (2016) Fluorescence studies of polymer containing systems. Springer, pp 27–63

    Google Scholar 

  32. Chen HW, Liang Y, Yu M, Chen L (2009) Synthesis of poly(methyl methacrylate) via reverse atom transfer radical polymerization catalyzed by FeCl3/lactic acid. J Appl Polym Sci 114(3):1593–1597

    Article  Google Scholar 

  33. Valentina G, Diego A, Katia S, Michele L, Tommaso JG, Federico FL, Gabriele S, Michele P (2013) On the thermal stability of PS-b-PMMA block and P(S-r-MMA) random copolymers for nanopatterning applications. Macromolecules 46(20):8224–8234

    Article  Google Scholar 

  34. Holland BJ, Hay JN (2002) The effect of polymerisation conditions on the kinetics and mechanisms of thermal degradation of PMMA. Polym Degrad Stab 77(3):435–439

    Article  CAS  Google Scholar 

  35. Crystal EP, Frank DB (2000) Thermal characterization of PMMA thin films using modulated differential scanning calorimetry. Macromolecules 33(19):7016–7020

    Article  Google Scholar 

  36. Xue L, Agarwal US, Lemstra PJ (2002) High molecular weight PMMA by ATRP. Macromolecules 35:8650–8652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Higher Education Commission of Pakistan for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zia Ur Rehman or Mohsan Nawaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imad-Ud-Din, Rehman, Z.U., Nawaz, M. et al. Self-assembly and thermal behavior of amphiphilic di-block copolymers of poly(methyl methacrylate)-block-poly(ethylene oxide) (PMMA-b-PEO). Polym. Bull. 80, 1845–1859 (2023). https://doi.org/10.1007/s00289-022-04148-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04148-8

Keywords

Navigation