Skip to main content
Log in

Structural, morphological, dielectric and tensile properties of BaTiO3-doped PVA/PVP polymer blend nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

BaTiO3 (BT)-doped polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blend nanocomposites are prepared by a simple solution casting method. The PVA/PVP/BT polymer nanocomposites (PNCs) are characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy and universal testing machine. The dielectric behaviour of PVA/PVP/BT PNCs is studied from 50 to 5 MHz at a temperature ranging from 35 to 155 °C. The C–O, C=O stretching peaks obtained from FTIR results confirm strong miscibility between PVA/PVP and Ti–O bands. The peaks in XRD data disclose the crystalline nature of the filler in the PNCs. From SEM results, good miscibility is found between the polymers and the filler. AFM study reveals increased roughness in the PNCs with an increase in BT%. The absorption spectrum is noticed to have shifted towards higher wavelengths with BT concentration. The dielectric constant (ε′) is found to be maximum for 5 wt% of BT in the PNCs that also exhibited maximum toughness and Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li Z, Fredin LA, Tewari P, Di Benedetto SA, Lanagan MT, Ratner MA, Marks TJ (2010) In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem Mater 22(18):5154–5164

    CAS  Google Scholar 

  2. Feng Z, Hao Y, Zhang J, Qin J, Guo L, Bi K (2019) Dielectric properties of two-dimensional Bi2Se3 hexagonal nanoplates modified PVDF nanocomposites. Adv Polym Tech 2019:1–8

    Google Scholar 

  3. Sathyakam PU, Mallick PS (2018) Future Dielectric Materials for CNT Interconnects-Possibilities and Challenges. J Nano Res 52:21–42

    CAS  Google Scholar 

  4. Abbas Zia, Olivieri Mauro (2014) Impact of technology scaling on leakage power in nano-scale bulk CMOS digital standard cells. Microelectron J 45:179–195

    Google Scholar 

  5. Clark R (2014) Emerging applications for high K materials in VLSI technology. Mater 7:42913–42944

    Google Scholar 

  6. Yim K, Yong Y, Lee J, Lee K, Nahm HH, Yoo J, Lee C, Han HCS, S, (2015) Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater 6:190

    Google Scholar 

  7. Lee M, Khan SB, Akhtar K, Han H, Seo J (2013) Fuel cell: synthesis and properties of polyimide for PEMFC at high temperature. Int J Electrochem Sci 81:4225–4233

    Google Scholar 

  8. Chung SH, Song S, Yang KJ, Jeong SM, Choi B (2014) Luminance enhancement of electroluminescent devices using highly dielectric UV-curable polymer and oxide nanoparticle composite. Opt Mater Express 9:1824–1832

    Google Scholar 

  9. Kittl JA, Opsomer K, Popovici M, Menou N, Kaczer B, Wang XP, Adelmann C, Pawlak MA, Tomida K, Rothschild A, Govoreanu B (2009) High-k dielectrics for future generation memory devices. Microelectron Eng 86:1789–1795

    CAS  Google Scholar 

  10. Chapi S (2020) Optical, electrical and electrochemical properties of PCL5/ITO transparent conductive films deposited by spin-coating—materials for single-layer devices. J Sci: Adv Mater Devices 5(3):322–329

    Google Scholar 

  11. Chapi S (2020) Structural and electrochemical properties of polymer blend based ZnO nanocomposite solid polymer electrolytes by spin–coating method. J Nano Elect Phys 12(2): 02043(1)–02043(5)

  12. Babaladimath G, Chapi S (2018) Microwave-assisted synthesis, characterization of electrical conducting and electrochemical xanthan gum-graft-polyaniline. J Mater Sci: Mater Electron 29(13):11159–11166

    CAS  Google Scholar 

  13. Chapi S (2021) Influence of Co2+ on the structure, conductivity, and electrochemical stability of poly (ethylene oxide)-based solid polymer electrolytes: energy storage devices. J Elect Mater 50(3):1558–1571

    CAS  Google Scholar 

  14. Chapi S, Devendrappa H (2016) Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites. J Mater Sci: Mater Electron 27:11974–11985

    CAS  Google Scholar 

  15. Chapi S, Raghu S, Devendrappa H (2016) Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22(6):803–814

    CAS  Google Scholar 

  16. Dang ZM (2014) Polymer nanocomposites with high permittivity. In: Tjong Sie-Chin (ed) Nanocrystalline materials, 2nd edn. Elsevier, pp 305–333

    Google Scholar 

  17. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn H, Zur Loye HC (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697–1733

    CAS  PubMed Central  Google Scholar 

  18. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336

    CAS  PubMed  Google Scholar 

  19. Tortai JH, Bonifaci N, Denat A, Trassy C (2005) Diagnostic of the self-healing of metallized polypropylene film by modeling of the broadening emission lines of aluminum emitted by plasma discharge. J Appl Phys 97(5):053304

    Google Scholar 

  20. Ash BJ, Diana F, Rogers CJ, Wiegand LS, Schadler RW, Siegel BC, Benicewicz TA (2002) Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites. Polym Compos 6:1014–1025

    Google Scholar 

  21. Baraker BM, Lobo B (2016) Experimental study of PVA-PVP blend films doped with cadmium chloride monohydrate. Indian J Pure Ap Phy 54:634–640

    Google Scholar 

  22. Akbar S, Sarwar G (2010) Study of hydrodynamic and non-hydrodynamic interaction parameters for water/PVP/PVA ternary system by solution viscometer. J Chem Soc Pakistan 3:270–276

    Google Scholar 

  23. Cassu SN, Felisberti MI (1997) Poly (vinyl alcohol) and poly (vinyl pyrrolidone) blends: miscibility, micro heterogeneity and free volume change. Polymer 38(15):3907–3911

    CAS  Google Scholar 

  24. Morariu S, Bercea M, Teodorescu M, Avadanei M (2016) Tailoring the properties of poly (vinyl alcohol)/poly (vinylpyrrolidone) hydrogels for biomedical applications. Eur Polym J 84:313–325

    CAS  Google Scholar 

  25. Zhang W, Cheng H, Yang Q, Fangren Hu, Ouyang J (2016) Crystallographic orientation dependent dielectric properties of epitaxial BT thin films. Ceram Int 42:4400–4405

    CAS  Google Scholar 

  26. Neagu AM, Curecheriu LP, Cazacu A, Mitoseriu L (2014) Impedance analysis and tunability of BT–chitosan composites: towards active dielectrics for flexible electronics. Compos B Eng 66:109–116

    CAS  Google Scholar 

  27. Phan TT, Mai NC, Chu VB, Luu HN, Xuan IM, Carriere P (2016) The role of epoxy matrix occlusions within BT nanoparticles on the dielectric properties of functionalized BT/epoxy nanocomposites. Compos Part A Appl S 90:528–535

    CAS  Google Scholar 

  28. Shareef NS, Chidambaram K (2019) Influence of hexagonal boron nitride and bt as hybrid fillers on the structural, morphological and dielectric behavior of polyvinyl alcohol nanocomposites. Mater Today: Proc 9:142–155

    Google Scholar 

  29. Paskal LL, Linets V, Syromyatnikov V, Dusheiko V (2002) Studies of Li-complexes with acrylonitrile copolymers by the dielectric method. Solid State Ion 147:383–390

    CAS  Google Scholar 

  30. Jamaluddin JF, Firouzi A, Islam MR, Yahaya ANA (2020) Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials. SN Appl Sci 2(7):1–10

    Google Scholar 

  31. Reddy N, Venugopal C, Ramesh Kumar VVR, Rao N (1993) Dielectric properties of amorphous cellulose acetate-butyrate polymer films. Polym Int 32(4):381–384

    CAS  Google Scholar 

  32. Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SK (2016) Influence of cerium oxide (CeO2) nanoparticles on the structural, morphological, mechanical and dielectric properties of PVA/PPy blend nanocomposites. Mater Today-Proc 3(6):1864–1873

    Google Scholar 

  33. Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membranes. Int J Polym Anal Charact 18(4):287–296

    CAS  Google Scholar 

  34. Lee YR, Kim SC, Lee HI, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71

    CAS  Google Scholar 

  35. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4(4):185

    PubMed  PubMed Central  Google Scholar 

  36. Kumar G, Prem AR, Phani RGSV, Prasad JS, Sanganal N, Manali R, Gupta NR (2014) Polyvinylpyrrolidone oral films of enrofloxacin: film characterization and drug release. Int J Pharm 471:146–152

    CAS  PubMed  Google Scholar 

  37. Ashiri R (2015) Obtaining a novel crystalline/amorphous core/shell structure in barium titanate nanocrystals by an innovative one-step approach. RSC Adv 5(60):48281–48289

    CAS  Google Scholar 

  38. Wei XX, Chen CM, Guo SQ, Guo F, Li XM, Wang XX, Li W (2014) Advanced visible-light-driven photo catalyst BiOBr–TiO2–graphene composite with graphene as a nano-filler. J Mater Chem A 2(13):4667–4675

    CAS  Google Scholar 

  39. Liang SX, Yin LX, Jing R, Zhang XY, Ma MZ, Liu RP (2014) Structure and mechanical properties of the annealed TZAV-30 alloy. Mater Des 58:368–373

    CAS  Google Scholar 

  40. Zafar R, Gupta N (2017) Pre-processing of BaTiO3 nano fillers in improving dielectric response of epoxy nanocomposites at higher filler concentrations. In: IEEE conference on electrical insulation and dielectric phenomenon (CEIDP), pp 477–480

  41. Aziz SB (2016) Modifying poly (vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater 45(1):736–745

    CAS  Google Scholar 

  42. Abdullah OG, Saleem SA (2016) Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly (vinyl alcohol) films. J Electron Mater 45(11):5910–5920

    CAS  Google Scholar 

  43. Ravi M, Kiran Kumar K, Narasimha Rao VVR (2015) Studies on electrical and optical properties of PVP: KIO4 complexed polymer electrolyte films. Mater Sci Eng 73(1):012145

    Google Scholar 

  44. Uma Maheshwari S, Govindan K, Raja M, Raja A, Pravin MBS, Vasanth Kumar S (2017) Preliminary studies of PVA/PVP blends incorporated with HAp and β-TCP bone ceramic as template for hard tissue engineering. Bio-Med Mater Eng 28(4):401–415

    CAS  Google Scholar 

  45. Friel JJ, Lyman CE (2006) Tutorial review: X-ray mapping in electron-beam instruments. Microsc Microanal 12(1):2–25

    CAS  PubMed  Google Scholar 

  46. Kappadan S, Gebreab TW, Thomas S, Kalarikkal N (2016) Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater Sci Semicond Process 51:42–47

    CAS  Google Scholar 

  47. Akdemir BS, Kusoglu IM (2021) Effect of curing conditions and BaTiO3 nanoparticle addition on dielectric constant of PDMS for EAP applications. Acta Phys Pol A 139(2):145–150

    CAS  Google Scholar 

  48. Kang X, Pan C, Chen Y, Pu X (2020) Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Adv 10(30):17752–17759

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pu Y, Chen W, Chen S, Langhammer HT (2005) Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics. Cerâmica 51:214–218

    CAS  Google Scholar 

  50. Aktaş P (2020) Synthesis and characterization of barium titanate nanopowders by pechini process. Celal Bayar Univ J Sci 16(3):293–300

    Google Scholar 

  51. Tahalyani J, Rahangdale KK, Balasubramanian K (2016) The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC adv 6(74):69733–69742

    CAS  Google Scholar 

  52. Rosa AFP, Hammes JM, Royer R (2020) Surface roughness optimization of SAE 1020 and SAE 1045 turning process using design of experiments. Braz J Dev 6(10):79069–79087

    Google Scholar 

  53. Espitia LA, Varela L, Pinedo CE, Tschiptschin AP (2013) Cavitation erosion resistance of low temperature plasma nitrided martensitic stainless steel. Wear 301(1–2):449–456

    CAS  Google Scholar 

  54. Xiong B, Li J, He C, Tang X, Lv Z, Li X, Yan X (2020) Effect of pore morphology and surface roughness on wettability of porous titania films. Mater Res Express 7(11):115013

    CAS  Google Scholar 

  55. Ngo CV, Chun DM (2016) Laser printing of superhydrophobic patterns from mixtures of hydrophobic silica nanoparticles and toner powder. Sci Rep 6(1):1–9

    Google Scholar 

  56. Lee S, Kang S (2016) Influences of zeta potential, water absorption and surface roughness of porous ceramics on marine bio-fouling. Int J Bio-Sci Bio-Technol 8(2):35–44

    Google Scholar 

  57. Mamidi N, Gamero MRM, Delgadillo RMV, Castrejón JV, Zúníga AE (2020) Engineering of functionalized carbon nano-onions reinforced nanocomposites: fabrication, biocompatibility, and mechanical properties. J Mater Res 35(8):922–930

    CAS  Google Scholar 

  58. Patel KK, Purohit R (2018) Dispersion of SiO2 nano particles on epoxy based polymer nano composites and its characterization. Orient J Chem 34(6):2998

    CAS  Google Scholar 

  59. Satheeskumar S, Kanagaraj G (2016) Experimental investigation on tribological behaviors of PA6, PA6-reinforced Al2O3 and PA6-reinforced graphite polymer composites. Bull Mater Sci 39(6):1467–1481

    CAS  Google Scholar 

  60. Sreeja S, Sreedhanya S, Smijesh N, Philip R, Muneera CI (2013) Organic dye impregnated poly (vinyl alcohol) nanocomposite as an efficient optical limiter: structure, morphology and photophysical properties. J Mater Chem C 1(24):3851–3861

    CAS  Google Scholar 

  61. Bhajantri RF, Ravindrachary V, Harisha A, Crasta V, Nayak SP, Poojary B (2006) Microstructural studies on BaCl2 doped poly (vinyl alcohol). Polymer 47(10):3591–3598

    CAS  Google Scholar 

  62. Kumar NB, Crasta V, Praveen BM (2014) Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10–98) doped by ZnO nanoparticles. Phys Res Int

  63. Wang Q, Chen G (2012) Effect of nanofillers on the dielectric properties of epoxy nanocomposites. Adv Mat Res 1(1):93

    Google Scholar 

  64. Sudha Kamath MK, Chandramani R, Radhakrishna MC (2015) Influence of rare earth ion lanthanum on physical properties of biodegradable polymer blend PVA/PVP. Asian J Appl Sci 3(04):2321–0893

    Google Scholar 

  65. Sharba KS Effect of adding neodymium oxide (NdO) on optical properties of (PVA-PVP) composites, sun international journal of engineering and basic sciences, 1(1): 2581–5547

  66. Rajesh K, Crasta V, Rithin Kumar NB (2020) Effect of MoO3 nanofiller on structural, optical, mechanical, dielectric and thermal properties of PVA/PVP blend. Mater Res Innov 24:270–278

    CAS  Google Scholar 

  67. Rao MC (2017) Dielectric Studies on PVA/PVP: Go based nanocomposite polymer films. Chem Sci Rev Lett 6(22):832–837

    Google Scholar 

  68. Zidan HM, El-Ghamaz NA, Abdelghany AM, Lotfy A (2016) Structural and electrical properties of PVA/PVP blend doped with methylene blue dye. Int J Electrochem Sci 11(11):9041–9056

    CAS  Google Scholar 

  69. Shanmugam GK, Krishnakumar V (2018) Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA–PVP polymer composite films. Indian J Phys 92(5):605–613

    CAS  Google Scholar 

  70. Abed RA, Habeeb MA (2013) Effect of chromium chloride (CrCl2) on the electrical properties for (PVA-PVP-CrCl2) films. J Inform Eng Appl 3(8):1–9

    Google Scholar 

  71. Rajesh K, Crasta V, Rithin Kumar NB, Shetty G, Rekha PD (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26(4):99

    Google Scholar 

  72. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Chidambaram K, Sadasivuni KK, AlMaadeed MAA (2016) Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methylcellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polym Plast Technol Eng 55(12):1240–1253

    CAS  Google Scholar 

  73. Deshmukh K, Ahamed MB, Polu AR, Sadasivuni KK, Pasha SK, Ponnamma D, Chidambaram K (2016) Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J Mater Sci-Mater El 27(11):11410–11424

    CAS  Google Scholar 

  74. Mohanapriya MK, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, Pasha SK (2017) Polyvinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device applications. J Mater Sci: Mater Electron 28(8):6099–6111

    CAS  Google Scholar 

  75. Elkholy MM, El-Deen LS (2000) The dielectric properties of TeO2–P2O5 glasses. Mater Chem Phys 65(2):192–196

    CAS  Google Scholar 

  76. Prashantha K, Soulestin J, Lacrampe MF, Lafranche E, Krawczak P, Dupin G, Claes M (2009) Taguchi analysis of shrinkage and warpage of injection-moulded polypropylene/multiwall carbon nanotubes nanocomposites. Express Polym Lett 3(10):630–638

    CAS  Google Scholar 

  77. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62(10–11):1327–1340

    CAS  Google Scholar 

  78. Shareef SNM, Chidambaram K, Pasha SK (2019) Structure, morphology and dielectric properties of hexagonal boron nitride nanoparticles reinforced biopolymer nanocomposites. Polym Plast Technol Mater 58(11):1210–1225

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Madhuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, N.S., Madhuri, W. Structural, morphological, dielectric and tensile properties of BaTiO3-doped PVA/PVP polymer blend nanocomposites. Polym. Bull. 80, 2389–2412 (2023). https://doi.org/10.1007/s00289-022-04146-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04146-w

Keywords

Navigation