Skip to main content

Advertisement

Log in

Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hypoxia is a major limitation that delays the healing of fractures. Lack of oxygen can lead to cell death and postpone tissue regeneration. Hence, eliminating oxygen starvation by adding oxygen can accelerate bone healing process. In this study, an oxygen-releasing polycaprolactone/sodium percarbonate/polyvinyl alcohol (PCL/SP-PVA) scaffold was developed via electrospinning method. The scaffold was employed as a platform for osteogenic differentiation of dental pulp stem cells (DPSCs). The characterization of the scaffold was carried out with the aid of using Fourier transform infrared and scanning electron microscopy analyses. Among the biological techniques, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay indicated that the scaffold had no growth inhibitory effect on the cultured DPSCs. Also, 4′,6-diamidino-2-phenylindole staining confirmed adhesion of the cells to the scaffold. Moreover, alkaline phosphatase (ALP) activity and alizarin red staining indicated that the prepared scaffold provides a proper matrix for osteogenic differentiation of DPSCs. After 14 and 21 days of DPSCs culture on the scaffold, the osteogenic induction of DPSCs was further confirmed by increasing the expression of ALP, osteocalcin and collagen type I genes using real-time polymerase chain reaction assay. In general, the prepared electrospun PCL/SP-PVA scaffold is capable to release oxygen, which effectively makes osteogenic induction of DPSCs. Therefore, our study supports the use of oxygen-releasing scaffolds as a potential strategy to accelerate bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Touri M et al (2020) Oxygen-releasing scaffolds for accelerated bone regeneration. ACS Biomater Sci Eng 6(5):2985–2994

    Article  CAS  Google Scholar 

  2. Perez RA, Mestres G (2016) Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C 61:922–939

    Article  CAS  Google Scholar 

  3. Lim JO et al (2015) Functionalized biomaterials-oxygen releasing scaffolds. J Biotechnol Biomater 5(2):1

    Google Scholar 

  4. Khorshidi S, Karkhaneh A, Bonakdar S (2020) Oxygen-releasing nanofibers for breathable bone tissue engineering application. J Biomater Appl 35(1):72–82

    Article  CAS  Google Scholar 

  5. Nejati S et al (2020) Development of an oxygen-releasing electroconductive in-situ crosslinkable hydrogel based on oxidized pectin and grafted gelatin for tissue engineering applications. Colloids Surf B Biointerfaces 196:111347

    Article  CAS  Google Scholar 

  6. Jiang W et al (2018) Comparative studies of H2O2/Fe (II)/formic acid, sodium percarbonate/Fe (II)/formic acid and calcium peroxide/Fe (II)/formic acid processes for degradation performance of carbon tetrachloride. Chem Eng J 344:453–461

    Article  CAS  Google Scholar 

  7. Pędziwiatr P (2018) Decomposition of hydrogen peroxide-kinetics and review of chosen catalysts. Acta Innov 26:45–52

    Article  Google Scholar 

  8. Liu Z et al (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  Google Scholar 

  9. Billiet T et al (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    Article  CAS  Google Scholar 

  10. Zehra M et al (2020) Oxygen generating polymeric nano fibers that stimulate angiogenesis and show efficient wound healing in a diabetic wound model. Int J Nanomed 15:3511

    Article  CAS  Google Scholar 

  11. Lebourg M et al (2013) Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. J Biomed Mater Res Part A 101(2):518–527

    Article  Google Scholar 

  12. Rodenas-Rochina J et al (2017) Influence of oxygen levels on chondrogenesis of porcine mesenchymal stem cells cultured in polycaprolactone scaffolds. J Biomed Mater Res Part A 105(6):1684–1691

    Article  CAS  Google Scholar 

  13. Martinez-Diaz S et al (2010) In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med 38(3):509–519

    Article  Google Scholar 

  14. Silva JC et al (2020) Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. J Biomed Mater Res B Appl Biomater 108(5):2153–2166

    Article  CAS  Google Scholar 

  15. Murphy JM et al (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum Off J Am Coll Rheumatol 48(12):3464–3474

    Article  Google Scholar 

  16. Wang X et al (2013) Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop 37(12):2491–2498

    Article  Google Scholar 

  17. Liang C, Wang C, Liu Z (2013) Stem cell labeling and tracking with nanoparticles. Part Part Syst Charact 30(12):1006–1017

    Article  CAS  Google Scholar 

  18. Yoshimura H et al (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3):449–462

    Article  CAS  Google Scholar 

  19. Potdar PD, Jethmalani YD (2015) Human dental pulp stem cells: Applications in future regenerative medicine. World J Stem Cells 7(5):839

    Article  Google Scholar 

  20. Isobe Y et al (2016) Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg 45(1):124–131

    Article  CAS  Google Scholar 

  21. Gao X et al (2020) Effects of targeted delivery of metformin and dental pulp stem cells on osteogenesis via demineralized dentin matrix under high glucose conditions. ACS Biomater Sci Eng 6(4):2346–2356

    Article  CAS  Google Scholar 

  22. Jensen J et al (2016) Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model. Sicot-j 2:1–9

    Article  Google Scholar 

  23. Horii A et al (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE 2(2):e190

    Article  Google Scholar 

  24. Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. In: Regenerative medicine and tissue engineering-cells and biomaterials. InTechOpen

  25. Kanafi M et al (2014) Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J 47(7):687–697

    Article  CAS  Google Scholar 

  26. Shiekh PA, Singh A, Kumar A (2018) Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications. ACS Appl Mater Interfaces 10(22):18458–18469

    Article  CAS  Google Scholar 

  27. Gao J et al (2020) Degradation and transformation of bisphenol A in UV/sodium percarbonate: dual role of carbonate radical anion. Water Res 171:115394

    Article  CAS  Google Scholar 

  28. Hosseinzadeh S et al (2017) Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold. Mater Sci Eng C 75:653–662

    Article  CAS  Google Scholar 

  29. Mohammadi Amirabad L et al (2017) Enhanced cardiac differentiation of human cardiovascular disease patient-specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds. ACS Appl Mater Interfaces 9(8):6849–6864

    Article  CAS  Google Scholar 

  30. Almasi N et al (2020) Stable conductive and biocompatible scaffold development using graphene oxide (GO) doped polyaniline (PANi). Int J Polym Mater Polym Biomater 69(14):896–906

    Article  CAS  Google Scholar 

  31. Esmaeili E et al (2019) Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells. J Cell Physiol 234(8):13617–13628

    Article  CAS  Google Scholar 

  32. Hosseinzadeh S et al (2016) Predictive modeling of phenolic compound release from nanofibers of electrospun networks for application in periodontal disease. J Polym Eng 36(5):457–464

    Article  CAS  Google Scholar 

  33. Mahmoudifard M et al (2016) Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications. Mater Sci Eng C 58:586–594

    Article  CAS  Google Scholar 

  34. Kolambkar YM et al (2010) Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Eng Part A 16(10):3219–3230

    Article  CAS  Google Scholar 

  35. Damayanti N (2010) Preparation of superhydrophobic PET fabric from Al2O3–SiO2 hybrid: geometrical approach to create high contact angle surface from low contact angle materials. J Sol-Gel Sci Technol 56(1):47–52

    Article  CAS  Google Scholar 

  36. Jin R et al (2018) Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. J Tissue Eng 9:2041731418817505

    Article  Google Scholar 

  37. Moradi L et al (2017) Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials 126:18–30

    Article  CAS  Google Scholar 

  38. Katsogiannis KAG, Vladisavljević GT, Georgiadou S (2015) Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur Polym J 69:284–295

    Article  CAS  Google Scholar 

  39. Moghe A et al (2009) Effect of the addition of a fugitive salt on electrospinnability of poly (ɛ-caprolactone). Polymer 50(14):3311–3318

    Article  CAS  Google Scholar 

  40. Rezwan K et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  Google Scholar 

  41. Bürki C et al (2020) Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations. Atmos Meas Tech 13(3):1517–1538

    Article  Google Scholar 

  42. Lee JS et al (2004) Role of molecular weight of atactic poly(vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 93(4):1638–1646

    Article  CAS  Google Scholar 

  43. Nakashima K et al (2016) Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover. Ultrason Sonochem 29:455–460

    Article  CAS  Google Scholar 

  44. Adeli H, Khorasani MT, Parvazinia M (2019) Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 122:238–254

    Article  CAS  Google Scholar 

  45. Ansari Z et al (2020) Polycaprolactone/fluoride substituted-hydroxyapatite (PCL/FHA) nanocomposite coatings prepared by in-situ sol-gel process for dental implant applications. Prog Org Coat 147:105873

    Article  CAS  Google Scholar 

  46. Huang A et al (2017) Fabrication of poly (ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 7(69):43432–43444

    Article  CAS  Google Scholar 

  47. Heirani-Tabasi A et al (2017) Chemokine receptors expression in MSCs: comparative analysis in different sources and passages. Tissue Eng Regen Med 14(5):605–615

    Article  CAS  Google Scholar 

  48. Alemi PS et al (2019) Synergistic effect of pressure cold atmospheric plasma and carboxymethyl chitosan to mesenchymal stem cell differentiation on PCL/CMC nanofibers for cartilage tissue engineering. Polym Adv Technol 30(6):1356–1364

    Article  CAS  Google Scholar 

  49. Mirhosseini M, Haddadi-Asl V, Zargarian SS (2016) Fabrication and characterization of hydrophilic poly (ε-caprolactone)/pluronic P123 electrospun fibers. J Appl Polym Sci 133(17):1–11

    Article  Google Scholar 

  50. Wang L et al (2014) Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials 35(25):6758–6775

    Article  CAS  Google Scholar 

  51. Golzar H et al (2018) Optimizing the hybrid nanostructure of functionalized reduced graphene oxide/silver for highly efficient cancer nanotherapy. New J Chem 42(15):13157–13168

    Article  CAS  Google Scholar 

  52. Behboudi H et al (2019) Carbon quantum dots in nanobiotechnology. Nanomaterials for advanced biological applications. Springer, pp 145–179

    Chapter  Google Scholar 

  53. Hosseinzadeh S et al (2014) The activation of satellite cells by nanofibrous poly ɛ-caprolacton constructs. J Biomater Appl 28(6):801–812

    Article  Google Scholar 

  54. Ansari S, Khorshidi S, Karkhaneh A (2019) Engineering of gradient osteochondral tissue: from nature to lab. Acta Biomater 87:41–54

    Article  CAS  Google Scholar 

  55. Turner CH et al (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32(4):437–441

    Article  CAS  Google Scholar 

  56. Ismail Z et al (2017) Application of graphene from exfoliation in kitchen mixer allows mechanical reinforcement of PVA/graphene film. Appl Nanosci 7(6):317–324

    Article  CAS  Google Scholar 

  57. McQuilling JP et al (2017) Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas. Biomater Sci 5(12):2437–2447

    Article  CAS  Google Scholar 

  58. Ramos TL et al (2016) MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 14(1):1–14

    Article  Google Scholar 

  59. Nardi NB, da Silva Meirelles L (2008) Mesenchymal stem cells: isolation, in vitro expansion and characterization. Stem Cells 174:249–282

    Article  Google Scholar 

  60. Ramos TL et al (2015) Do endothelial cells belong to the primitive stem leukemic clone in CML? Role Extracell Vesicles Leuk Res 39(8):921–924

    CAS  Google Scholar 

  61. Mehrabani D et al (2017) Growth kinetics and characterization of human dental pulp stem cells: comparison between third molar and first premolar teeth. J Clin Exp Dent 9(2):e172

    Google Scholar 

  62. Kanafi MM, Human dental pulp stem cells isolation characterization and differentiation to dopaminergic neurons and islet cells and its preclinical studies in diabetic type i model

  63. Du J et al (2014) Influence of alkali treatment on Ti6Al4V alloy and the HA coating deposited by hydrothermal-electrochemical methods. Rare Metal Mater Eng 43(4):830–835

    Article  CAS  Google Scholar 

  64. Lu X et al (2007) Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol–gel techniques. Mater Lett 61(18):3970–3973

    Article  CAS  Google Scholar 

  65. Zhang L et al (2020) In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery. Adv Funct Mater 30(7):1906922

    Article  CAS  Google Scholar 

  66. Cheung H-Y et al (2007) A critical review on polymer-based bio-engineered materials for scaffold development. Compos B Eng 38(3):291–300

    Article  Google Scholar 

  67. Ghorghi M et al (2020) Electrospun captopril-loaded PCL-carbon quantum dots nanocomposite scaffold: fabrication, characterization, and in vitro studies. Polym Adv Technol 31(12):3302–3315

    Article  CAS  Google Scholar 

  68. Touri M et al (2018) 3D–printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival. Mater Sci Eng C 84:236–242

    Article  CAS  Google Scholar 

  69. Zhu Y, Mao Z, Gao C (2013) Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient. Biomacromol 14(2):342–349

    Article  CAS  Google Scholar 

  70. Liu D et al (2019) 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J 362:269–279

    Article  CAS  Google Scholar 

  71. Hsu SH, Chen CT, Wei YH (2013) Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Stem Cells 31(12):2779–2788

    Article  CAS  Google Scholar 

  72. Touri M et al (2019) Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceram Int 45(1):805–816

    Article  CAS  Google Scholar 

  73. Bao Q et al (2017) An appropriate Wnt/β-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Sci Rep 7(1):1–11

    Article  Google Scholar 

  74. Bensimon-Brito A et al (2016) Revisiting in vivo staining with alizarin red S-a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Dev Biol 16(1):1–10

    Article  Google Scholar 

  75. Camci-Unal G et al (2013) Oxygen-releasing biomaterials for tissue engineering. Polym Int 62(6):843–848

    Article  CAS  Google Scholar 

  76. Lin S-S et al (2014) Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/β-catenin signaling—an in vitro and in vivo study. Stem Cell Res 12(1):260–274

    Article  CAS  Google Scholar 

Download references

Funding

This research received a Grant by ID code of 15433 and ethical number of IR.SBMU.RETECH.REC.1398.028 from Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arash Khojasteh or Simzar Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanipour, R., Farzaneh, S., Ranjbari, J. et al. Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold. Polym. Bull. 80, 1795–1816 (2023). https://doi.org/10.1007/s00289-022-04145-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04145-x

Keywords

Navigation