Skip to main content
Log in

Synthesis and characterization of thermally stable polyurea-TiO2 nanocomposites based on amine terminated polybutadiene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthesis and characterization of novel amine terminated polybutadiene, polyurea and TiO2-nanocomposites is the aim of current art work. In this regard, polyurea synthesized trough following consecutive reactions: 1. Oxidative chains scission of polybutadiene (PB) by meta-chloroperbenzoic acid (m-CPBA) and periodic acid (H5IO6) to prepare telechelic aldehyde functionalized polybutadiene, 2. Terminal amine functionalized polybutadiene synthesis via reductive amination reaction of prepared aldehyde functionalized polybutadiene and ethylenediamine (EDA) by sodium borohydride (NaBH4) and finally, 3. Telechelic polyurea preparation through the reaction of synthesized amine functionalized polybutadiene and toluene diisocyanate (TDI). A one-pot polymerization procedure was employed to synthesize nanocomposites by the incorporation of 1 to 3% of surface modified TiO2 nanoparticles by amino propyl triethoxy silane (APTS). Successful synthesize of amine functionalized polybutadiene, polyurea and nanocomposites investigated using 1H-NMR and FT-IR spectroscopy techniques. TGA/DTG and DSC methods proved successful surface modification of nanoparticles, improved thermal stabilities with lower degradation rates and superior thermal characteristics especially in 3 wt% nanocomposite when compared by pristine sample. SEM, XRD and AFM analysis confirmed successful nanocomposite synthesis with progressed morphologic and topographic properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HTPB:

Hydroxy terminated polybutadiene

CTPB:

Carboxy terminated polybutadiene

EHTPB:

Epoxidized hydroxy terminated polybutadiene

RHTPB:

Reduced hydroxy terminated polybutadiene

PB:

Polybutadiene

Ald:

Telechelic aldehyde functionalized polybutadiene

Am:

Telechelic amine functionalized polybutadiene

PUr:

Polyurea

TiO2@APTS:

Aminopropyltriethoxysilane surface modified TiO2 nanoparticle

PUr-TiO2 :

Nanocomposite of polyurea with TiO2@APTS core–shell organosilane filler

PUr-1TiO2 and PUr-3TiO2 :

Nanocomposites with respectively 1 and 3 wt% TiO2@APTS nanoparticle in PUr matrix

1H-NMR:

Proton nuclear magnetic resonance spectroscopy

FT-IR:

Fourier transform-infrared spectroscopy

TGA/DTG:

Thermogravimetric and differential thermogravimetric analysis

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

AFM:

Atomic force microscopy

References

  1. Bai J, Li H, Shi Z, Yin J (2015) An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol-ene and diels-alder click chemistry. Macromolecules 48:3539–3546. https://doi.org/10.1021/acs.macromol.5b00389

    Article  CAS  Google Scholar 

  2. Polgar LM, Van Duin M, Broekhuis A, Picchioni F (2015) Use of diels-alder chemistry for thermoreversible cross-linking of rubbers: The next step toward recycling of rubber products? Macromolecules 48:7096–7105. https://doi.org/10.1021/acs.macromol.5b01422

    Article  CAS  Google Scholar 

  3. Fang Y, Zhan M, Wang Y (2001) The status of recycling of waste rubber. Mater Des 22:123–127. https://doi.org/10.1016/S0261-3069(00)00052-2

    Article  CAS  Google Scholar 

  4. Trovatti E, Lacerda TM, Carvalho AJF, Gandini A (2015) Recycling tires? Reversible crosslinking of poly(butadiene). Adv Mater 27:1–4. https://doi.org/10.1002/adma.201405801

    Article  CAS  Google Scholar 

  5. Nikje MMA, Hajifatheali H (2013) Performance of dimethyl dioxirane/nano-TiO2 on epoxidation of polybutadiene and hydroxyl terminated polybutadiene. J Elastomers Plast 45:457–469. https://doi.org/10.1177/F0095244312457800

    Article  Google Scholar 

  6. Berto P, Grelier S, Peruch F (2017) Telechelic polybutadienes or polyisoprenes precursors for recyclable elastomeric networks. Macromolecules 38:2–7. https://doi.org/10.1002/marc.201700475

    Article  CAS  Google Scholar 

  7. Berto P, Pointet A, Coz CL, Grelier S, Peruch F (2017) Recyclable telechelic cross linked polybutadiene based on reversible Diels–Alder chemistry. Macromolecules 51:651–659. https://doi.org/10.1021/acs.macromol.7b02220

    Article  CAS  Google Scholar 

  8. Phinyocheep P, Phetphaisit CW, Derouet D, Campistron I, Brosse JC (2005) Chemical degradation of epoxidized natural rubber using periodic acid: preparation of epoxidized liquid natural rubber. J Appl Poly Sci 95:6–15. https://doi.org/10.1002/app.20812

    Article  CAS  Google Scholar 

  9. Fainleib A, Pires RV, Lucas EF, Soares BG (2013) Degradation of non-vulcanized natural rubber—renewable resource for fine chemicals used in polymer synthesis. Polimeros 23:441–450. https://doi.org/10.4322/polimeros.2013.070

    Article  CAS  Google Scholar 

  10. Morita A, Maughon BR, Bielawski CW, Grubbs RH (2000) A ring-opening metathesis polymerization (romp) approach to carboxyl- and amino-terminated telechelic poly(butadiene)s. Macromolecules 33:6621–6623. https://doi.org/10.1021/ma000013x

    Article  CAS  Google Scholar 

  11. Quagliano J, Bocchio J, Ross P (2019) Mechanical and swelling properties of hydroxyl-terminated polybutadiene-based polyurethane elastomers. TMS 71:2097–2102. https://doi.org/10.1007/s11837-019-03417-8

    Article  CAS  Google Scholar 

  12. Zhou Q, Jie S, Li BG (2015) Facile synthesis of novel HTPBs and EHTPBs with high cis-1,4 content and extremely low glass transition temperature. Polymer 67:208–215. https://doi.org/10.1016/j.polymer.2015.04.078

    Article  CAS  Google Scholar 

  13. Gold BJ, Hovelmann CH, Weiss C, Radulescu A, Allgaier J, Pyckhout-Hintzen W, Wischnewski A, Richter D (2016) Sacrificial bonds enhance toughness of dual polybutadiene networks. Polymer 87:123–128. https://doi.org/10.1016/j.polymer.2016.01.077

    Article  CAS  Google Scholar 

  14. Zhang Q, Shu Y, Liu N, Lu X, Shu Y, Wang X, Mo H, Xu M (2019) Hydroxyl terminated polybutadiene: chemical modification and application of these modifiers in propellants and explosives. Cent Eur J Energetic Mater 16:153–193. https://doi.org/10.22211/cejem/109806

    Article  CAS  Google Scholar 

  15. Tripathi M, Parthasarathy S, Roy PK (2020) Mechanically robust polyurea nanofibers processed through electrospinning technique. Mater Today Commun 22:100771. https://doi.org/10.1016/j.mtcomm.2019.100771

    Article  CAS  Google Scholar 

  16. Bonattini VH, Paula LA, Jesus NA, Tavares DC, Nicolella HD, Magalhaes LG, Molina EF (2020) One-step formation of polyurea gel as a multifunctional approach for biological and environmental applications. Polym In 69:476–484. https://doi.org/10.1002/pi.5978

    Article  CAS  Google Scholar 

  17. Liu W, Fang C, Chen F, Qiu X (2020) Strong, reusable and self-healing lignin-containing polyurea adhesives. Chemsuschem 17:1–11. https://doi.org/10.1002/cssc.202001602

    Article  CAS  Google Scholar 

  18. Iqbal N, Tripathi M, Parthasarathy S, Kumar D, Roy PK (2016) Polyurea coatings for enhanced blast-mitigation: a review. RSC 6:10706–109717. https://doi.org/10.1039/c6ra23866a

    Article  Google Scholar 

  19. Wu C, Wang J, Chang P, Cheng H, Yu Y, Wu Z, Dong D, Zhao F (2012) Polyureas from diamines and carbon dioxide: synthesis, structures and properties. Phys Chem Chem Phys 14:464–468. https://doi.org/10.1039/C1CP23332G

    Article  PubMed  Google Scholar 

  20. Holzworth K, Jia Z, Amirkhizi AV, Qiao J, Nemat-Nasser S (2013) Effect of isocyanate content on thermal and mechanic al properties of polyurea. Polymer 54:3079–3085. https://doi.org/10.1016/j.polymer.2013.03.067

    Article  CAS  Google Scholar 

  21. Tian X, Zhang S, Ma Y-Q, Luo Y-L, Xu F, Chen Y-S (2019) Preparation and vapor-sensitive properties of hydroxyl-terminated polybutadiene polyurethane conductive polymer nanocomposites based on polyaniline-coated multiwalled carbon nanotubes. Nanotechnology 31:195504. https://doi.org/10.1088/1361-6528/ab704c

    Article  CAS  Google Scholar 

  22. Vijayan PP, Puglia D, Vijayan PP, Kenny JM, Thomas S (2017) The role of clay modifier on cure characteristics and properties of epoxy/clay/carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) hybrid. Mater Technol 32:171–177. https://doi.org/10.1080/10667857.2016.1161946

    Article  CAS  Google Scholar 

  23. Lade R, Wasewar K, Sangtyani R, Kumar A, Shende D, Peshwe D (2019) Influence of the addition of aluminium nanoparticles on thermo-rheological properties of hydroxyl terminated polybutadiene-based composite propellant and empirical modelling. J Therm Anal Calorim 138:211–223. https://doi.org/10.1007/s10973-019-08149-0

    Article  CAS  Google Scholar 

  24. Dalod APM, Henriksen L, Grande T, Einarsrud MA (2017) Functionalized TiO2 nanoparticles by single-step hydrothermal synthesis: the role of the silane coupling agents. Nanotechnology 8:304–312. https://doi.org/10.3762/bjnano.8.33

    Article  CAS  Google Scholar 

  25. Hussein MA, Alamry KA, Almehmadi SJ, Elfaky MA, Cancar HD, Asiri AM, Hussien MA (2020) Novel biologically active polyurea derivatives and its TiO2-doped nanocomposites. Des Monomers Polym 23:59–74. https://doi.org/10.1080/15685551.2020.1767490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rahmatpanah Z, Nikje MMA (2020) A novel synthesis of polybutadiene-based polyurethane binder and conductive graphene–polyurethane nanocomposites: a new approach to polybutadiene recycling. Polym Bull. https://doi.org/10.1007/s00289-020-03288-z

    Article  Google Scholar 

  27. Nikje MMA, Hajifatheali H (2012) Synthesis and characterization of terminally functionalized and epoxidized hydroxyl-terminated polybutadiene. Polym Bull 68:973–982. https://doi.org/10.1007/s00289-011-0592-y

    Article  CAS  Google Scholar 

  28. Bahadur A, Saeed A, Iqbal S, Shoaib M, Rahman MS, Bashir MI, Asghar M, Ali MAM (2017) Biocompatible waterborne polyurethane-urea elastomer as intelligent anticancer drug release matrix: a sustained drug release study. React Funct Polym 119:57–63. https://doi.org/10.1016/j.reactfunctpolym.2017.08.001

    Article  CAS  Google Scholar 

  29. Sever E, Unal HI (2015) Colloidal properties of surface functionalized nanocube-TiO2/poly(3-octylthiophene) core/shell conducting nanocomposite. Appl Surf Sci 355:1028–1036. https://doi.org/10.1016/j.apsusc.2015.07.013

    Article  CAS  Google Scholar 

  30. Yang Y, Zhou Y, Wang T (2014) Preparation of optically active polyurethane/TiO2/MnO2 multilayered nanorods for low infrared emissivity. Mater Lett 133:269–273. https://doi.org/10.1016/j.matlet.2014.06.184

    Article  CAS  Google Scholar 

  31. Zhou Q, Jie S, Li B-G (2014) Preparation of hydroxyl-terminated polybutadiene with high Cis-1,4 content. Ind Eng Chem Res 53:17884–17893. https://doi.org/10.1021/ie503652g

    Article  CAS  Google Scholar 

  32. Koberstein JT (1986) Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 19:714–720. https://doi.org/10.1021/ma00157a039

    Article  CAS  Google Scholar 

  33. Chen TK, Chui JY, Shieh TS (1997) Glass transition behaviors of a polyurethane hard segment based on 4,4¢-diisocyanatodiphenylmethane and 1,4-butanediol and the calculation of microdomain composition. Macromolecules 30:5068–5074. https://doi.org/10.1021/ma9618639

    Article  CAS  Google Scholar 

  34. Balko J, Fernández-d’Arlas B, Pöselt E, Dabbous R, Müller AJ, Thurn-Albrecht T (2017) Clarifying the origin of multiple melting of segmented thermoplastic polyurethanes by fast scanning calorimetry. Macromolecules 50:7672–7680. https://doi.org/10.1021/acs.macromol.7b00871

    Article  CAS  Google Scholar 

  35. Leung LM, Koberstein JT (1986) DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 19:706–713. https://doi.org/10.1021/ma00157a038

    Article  CAS  Google Scholar 

  36. Cai Y, Jiang J-S, Zheng B, Xie M-R (2012) Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(e-caprolactone)-polyurethane nanocomposites. Appl Polym Sci 127:1–8. https://doi.org/10.1002/app.36849

    Article  CAS  Google Scholar 

  37. Ross P, Escobar G, Sevilla G, Quagliano J (2017) Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties. Open Chem 15:46–52. https://doi.org/10.1515/chem-2017-0006

    Article  CAS  Google Scholar 

  38. Gómez-Fernández S, Ugarte L, Peña-Rodriguez C, Zubitur M, Corcuera MA, Eceiza A (2016) Flexible polyurethane foam nanocomposites with modified layered double hydroxides. J Appl Clay Sci 123:109–120. https://doi.org/10.1016/j.clay.2016.01.015

    Article  CAS  Google Scholar 

  39. Kebir N, Campistron I, Laguerrea A, Pilard JF, Bunel C, Jouenne T (2007) Use of telechelic cis-1,4-polyisoprene cationomers in the synthesis of antibacterial ionic polyurethanes and copolyurethanes bearing ammonium groups. Biomaterials 28:4200–4208. https://doi.org/10.1016/j.biomaterials.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  40. Cao R, Liu H, Pei D, Miao J, Zhang X (2017) Fabrication and properties of graphene oxide-grafted-poly(hexadecylacrylate) as a solid-solid phase change material. Compos Sci Technol 149:262–268. https://doi.org/10.1016/j.compscitech.2017.06.019

    Article  CAS  Google Scholar 

  41. Lee HT, Lin LH (2006) Waterborne polyurethane/clay nanocomposites: novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39:6133–6141. https://doi.org/10.1021/ma060621y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Imam Khomeini International University (IKIU).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZR. The first draft of the manuscript was written by ZR and MMAN commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Mir Mohammad Alavi Nikje.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 478 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatpanah, Z., Alavi Nikje, M.M. Synthesis and characterization of thermally stable polyurea-TiO2 nanocomposites based on amine terminated polybutadiene. Polym. Bull. 80, 2437–2455 (2023). https://doi.org/10.1007/s00289-022-04132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04132-2

Keywords

Navigation