Skip to main content
Log in

Antibacterial activity study of ZnO incorporated biodegradable poly (lactic acid) films for food packaging applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this report, the antibacterial activity of pure polylactic acid (PLA), Zinc oxide (ZnO) incorporated PLA, and ZnO nanorods grown on the ZnO incorporated PLA films prepared by a simple film casting method was studied. ZnO nanorods were grown on ZnO mixed PLA films by a simple hydrothermal method at 80 °C temperature. The SEM study confirms the formation of ZnO nanorods on PLA. The length and diameter of nanorods are approximately 2–3 µm and 500 nm, respectively. The high elemental percentage of Zn and O was observed in the energy-dispersive spectra of ZnO nanorods grown ZnO mixed PLA film due to the presence of ZnO nanorods on the surface of the film. The TGA analysis has shown thermal stability enhancement by approximately 10 °C in the ZnO nanorods grown film compared to pure PLA film. Furthermore, the antibacterial activity of these films was tested against Escherichia coli (E. coli) bacteria and Staphylococcus aureus (S. aureus) bacteria. The zone of inhibition values for pure PLA, ZnO incorporated PLA, and ZnO nanorods grown films are 0, 16, 19 mm and 0, 18, 21 mm for E. coli and S. aureus, respectively. More antibacterial activity was observed for the film containing ZnO nanorods on its surface than the pure PLA and ZnO mixed PLA films. This process of growing ZnO nanorods on PLA film surfaces can be easily adapted to large-scale production for packaging applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  Google Scholar 

  2. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014

    Article  CAS  Google Scholar 

  3. Jin FL, Hu RR, Park SJ (2019) Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review. Compos Part B Eng 164:287–296. https://doi.org/10.1016/J.COMPOSITESB.2018.10.078

    Article  CAS  Google Scholar 

  4. Siakeng R, Jawaid M, Asim M et al (2021) (2021) Flexural and dynamic mechanical properties of alkali-treated coir/pineapple leaf fibres reinforced polylactic acid hybrid biocomposites. J Bionic Eng 186(18):1430–1438. https://doi.org/10.1007/S42235-021-00086-9

    Article  Google Scholar 

  5. Zhang JB, Zhang H, Jin FL, Park SJ (2020) Enhancement of impact strength of poly(lactic acid)/silicon carbide nanocomposites through surface modification with titanate-coupling agents. Bull Mater Sci. https://doi.org/10.1007/s12034-019-1977-z

    Article  Google Scholar 

  6. Chen J, Hu RR, Jin FL, Park SJ (2021) Synergistic reinforcing of poly(lactic acid) by poly(butylene adipate-co-terephthalate) and alumina nanoparticles. J Appl Polym Sci 138:1–9. https://doi.org/10.1002/app.50250

    Article  CAS  Google Scholar 

  7. Porfyris A, Vasilakos S, Zotiadis C et al (2018) Accelerated ageing and hydrolytic stabilization of poly(lactic acid) (PLA) under humidity and temperature conditioning. Polym Test 68:315–332. https://doi.org/10.1016/j.polymertesting.2018.04.018

    Article  CAS  Google Scholar 

  8. Montes S, Etxeberria A, Mocholi V et al (2018) Effect of combining cellulose nanocrystals and graphene nanoplatelets on the properties of poly(lactic acid) based films. Express Polym Lett 12:543–555. https://doi.org/10.3144/expresspolymlett.2018.45

    Article  CAS  Google Scholar 

  9. Sevastaki M, Papadakis VM, Romanitan C et al (2021) Photocatalytic properties of eco-friendly zno nanostructures on 3d-printed polylactic acid scaffolds. Nanomaterials 11:1–13. https://doi.org/10.3390/nano11010168

    Article  CAS  Google Scholar 

  10. Jamróz E, Kulawik P, Kopel P (2019) The effect of nanofillers on the functional properties of biopolymer-based films: a review. Polymers (Basel) 11:1–43. https://doi.org/10.3390/polym11040675

    Article  CAS  Google Scholar 

  11. Abbas M, Buntinx M, Deferme W, Peeters R (2019) (Bio)polymer/ZnO nanocomposites for packaging applications: a review of gas barrier and mechanical properties. Nanomaterials 9:1–14. https://doi.org/10.3390/nano9101494

    Article  CAS  Google Scholar 

  12. Chu Z, Zhao T, Li L et al (2017) Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials (Basel). https://doi.org/10.3390/ma10060659

    Article  Google Scholar 

  13. Rasheed M, Jawaid M, Parveez B et al (2021) Morphology, structural, thermal, and tensile properties of bamboo microcrystalline cellulose/poly(lactic acid)/poly(butylene succinate) composites. Polymers (Basel) 13:1–15. https://doi.org/10.3390/polym13030465

    Article  CAS  Google Scholar 

  14. Montes-Zavala I, Pérez-González MJ, Castrejón-González EO et al (2021) Thermal and mechanical properties of poly(lactic acid) filled with modified silicon dioxide: importance of the surface area. Polym Bull. https://doi.org/10.1007/s00289-021-03571-7

    Article  Google Scholar 

  15. Kausar A (2019) Polymeric nanocomposites reinforced with nanowires: opening doors to future applications. J Plastic Film Sheeting

  16. Shende P, Kasture P, Gaud RS (2018) Nanoflowers: the future trend of nanotechnology for multi-applications. Artif Cells, Nanomed Biotechnol 46:413–422. https://doi.org/10.1080/21691401.2018.1428812

    Article  CAS  Google Scholar 

  17. Rouhi J, Mahmud S, Naderi N et al (2013) Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res Lett 8:1–6. https://doi.org/10.1186/1556-276X-8-364

    Article  CAS  Google Scholar 

  18. Ahmed HB, Emam HE, Mashaly HM, Rehan M (2018) Nanosilver leverage on reactive dyeing of cellulose fibers: color shading, color fastness and biocidal potentials. Carbohydr Polym 186:310–320. https://doi.org/10.1016/j.carbpol.2018.01.074

    Article  CAS  Google Scholar 

  19. Salem W, Leitner DR, Zingl FG et al (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305:85–95. https://doi.org/10.1016/j.ijmm.2014.11.005

    Article  CAS  Google Scholar 

  20. Ahmed HB, Emam HE (2019) Synergistic catalysis of monometallic (Ag, Au, Pd)and bimetallic (Ag[sbnd]Au, Au[sbnd]Pd)versus trimetallic (Ag–Au–Pd)nanostructures effloresced via analogical techniques. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.110975

    Article  Google Scholar 

  21. Emam HE (2019) Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J Polym Environ 27:210–223. https://doi.org/10.1007/s10924-018-1331-3

    Article  CAS  Google Scholar 

  22. Ahmed HB, Mikhail MM, El-Sherbiny S et al (2020) pH responsive intelligent nano-engineer of nanostructures applicable for discoloration of reactive dyes. J Colloid Interface Sci 561:147–161. https://doi.org/10.1016/j.jcis.2019.11.060

    Article  CAS  Google Scholar 

  23. Fan X, Yan Y (2020) Poly(amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties. Polym Bull 77:2325–2343. https://doi.org/10.1007/s00289-019-02860-6

    Article  CAS  Google Scholar 

  24. Heydari-Majd M, Ghanbarzadeh B, Shahidi-Noghabi M et al (2020) Poly(lactic acid)-based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties. Polym Bull. https://doi.org/10.1007/s00289-020-03490-z

    Article  Google Scholar 

  25. Rao JK, Raizada A, Ganguly D et al (2015) Enhanced mechanical properties of polyvinyl alcohol composite films containing copper oxide nanoparticles as filler. Polym Bull 72:2033–2047. https://doi.org/10.1007/s00289-015-1386-4

    Article  CAS  Google Scholar 

  26. Swaroop C, Shukla M (2019) Development of blown polylactic acid-MgO nanocomposite films for food packaging. Compos Part A Appl Sci Manuf 124:105482. https://doi.org/10.1016/j.compositesa.2019.105482

    Article  CAS  Google Scholar 

  27. Singh J, Juneja S, Palsaniya S et al (2019) Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surfaces B Biointerfaces 184:110541. https://doi.org/10.1016/j.colsurfb.2019.110541

    Article  CAS  Google Scholar 

  28. De Silva RT, Pasbakhsh P, Lee SM, Kit AY (2015) ZnO deposited/encapsulated halloysite-poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl Clay Sci 111:10–20. https://doi.org/10.1016/j.clay.2015.03.024

    Article  CAS  Google Scholar 

  29. Shameli K, Bin AM, Yunus MZW, W, et al (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579. https://doi.org/10.2147/ijn.s12007

    Article  CAS  Google Scholar 

  30. Zhang R, Lan W, Ji T et al (2021) Development of polylactic acid/ZnO composite membranes prepared by ultrasonication and electrospinning for food packaging. LWT 135:110072. https://doi.org/10.1016/j.lwt.2020.110072

    Article  CAS  Google Scholar 

  31. Maróti P, Kocsis B, Ferencz A et al (2020) Differential thermal analysis of the antibacterial effect of PLA-based materials planned for 3D printing. J Therm Anal Calorim 139:367–374. https://doi.org/10.1007/s10973-019-08377-4

    Article  CAS  Google Scholar 

  32. Suryanegara L, Fatriasari W, Zulfiana D et al (2021) Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. J Environ Heal Sci Eng. https://doi.org/10.1007/s40201-021-00614-z

    Article  Google Scholar 

  33. Brounstein Z, Yeager CM, Labouriau A (2021) Development of antimicrobial PLA composites for fused filament fabrication. Polymers (Basel) 13:580. https://doi.org/10.3390/polym13040580

    Article  CAS  Google Scholar 

  34. Swaroop C, Shukla M (2018) Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol 113:729–736. https://doi.org/10.1016/j.ijbiomac.2018.02.156

    Article  CAS  Google Scholar 

  35. Mallick S, Ahmad Z, Touati F et al (2018) PLA-TiO2 nanocomposites: thermal, morphological, structural, and humidity sensing properties. Ceram Int 44:16507–16513. https://doi.org/10.1016/j.ceramint.2018.06.068

    Article  CAS  Google Scholar 

  36. Kim I, Viswanathan K, Kasi G et al (2019) Poly(lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers (Basel). https://doi.org/10.3390/polym11091427

    Article  Google Scholar 

  37. Batool M, Abid A, Khurshid S et al (2021) Quality control of nano-food packing material for grapes (Vitis vinifera) based on ZnO and polylactic acid (PLA) biofilm. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05361-9

    Article  Google Scholar 

  38. Akshaykranth A, Rao TV, Kumar RR (2020) Growth of ZnO nanorods on biodegradable poly (lactic acid) (PLA) substrates by low temperature solution method. Mater Lett 259:126807. https://doi.org/10.1016/J.MATLET.2019.126807

    Article  CAS  Google Scholar 

  39. Yu Z, Li H, Qiu Y et al (2017) Size-controllable growth of ZnO nanorods on Si substrate. Superlattices Microstruct 101:469–479. https://doi.org/10.1016/j.spmi.2016.12.005

    Article  CAS  Google Scholar 

  40. Lv Y, Zhang Z, Yan J et al (2017) Growth mechanism and photoluminescence property of hydrothermal oriented ZnO nanostructures evolving from nanorods to nanoplates. J Alloys Compd 718:161–169. https://doi.org/10.1016/j.jallcom.2017.05.075

    Article  CAS  Google Scholar 

  41. Hossein-Babaei F, Akbari-Saatlu M (2017) Growth of ZnO nanorods on the surface and edges of a multilayer graphene sheet. Scr Mater 139:77–82. https://doi.org/10.1016/j.scriptamat.2017.06.025

    Article  CAS  Google Scholar 

  42. Hou S, Li C (2016) Aluminum-doped zinc oxide thin film as seeds layer effects on the alignment of zinc oxide nanorods synthesized in the chemical bath deposition. Thin Solid Films 605:37–43. https://doi.org/10.1016/j.tsf.2015.11.085

    Article  CAS  Google Scholar 

  43. Xu L, Wang X, Qian L et al (2020) The dependence of the optical properties of ZnO nanorod arrays on their growth time. Optik (Stuttg) 202:163634. https://doi.org/10.1016/j.ijleo.2019.163634

    Article  CAS  Google Scholar 

  44. Brahma S, Shivashankar SA (2020) Microwave irradiation assisted rapid growth of ZnO nanorods over metal coated/electrically conducting substrate. Mater Lett 264:127370. https://doi.org/10.1016/j.matlet.2020.127370

    Article  CAS  Google Scholar 

  45. Ding Y, Zheng F, Zhu Z (2016) Low-temperature seeding and hydrothermal growth of ZnO nanorod on poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic acid). Mater Lett 183:197–201. https://doi.org/10.1016/j.matlet.2016.07.093

    Article  CAS  Google Scholar 

  46. Gaddam V, Kumar RR, Parmar M et al (2015) Synthesis of ZnO nanorods on a flexible Phynox alloy substrate: influence of growth temperature on their properties. RSC Adv 5:89985–89992. https://doi.org/10.1039/c5ra12773d

    Article  CAS  Google Scholar 

  47. Wahab R, Kim YS, Lee K, Shin HS (2010) Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J Mater Sci 45:2967–2973. https://doi.org/10.1007/s10853-010-4294-x

    Article  CAS  Google Scholar 

  48. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater. https://doi.org/10.1155/2012/624520

    Article  Google Scholar 

  49. Gong M, Zhao Q, Dai L et al (2017) Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties. J Asian Ceram Soc 5:160–168. https://doi.org/10.1016/j.jascer.2017.04.001

    Article  Google Scholar 

  50. Pantani R, Gorrasi G, Vigliotta G et al (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482. https://doi.org/10.1016/j.eurpolymj.2013.08.005

    Article  CAS  Google Scholar 

  51. Shankar S, Wang LF, Rhim JW (2018) Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater Sci Eng C 93:289–298. https://doi.org/10.1016/j.msec.2018.08.002

    Article  CAS  Google Scholar 

  52. Vasile C, Academy R, Stan M (2017) New PLA/ZnO : Cu/Ag bionanocomposites for food packaging New PLA/ZnO : Cu/Ag bionanocomposites for food packaging. Express Polym Lett 11:531–544

    Article  CAS  Google Scholar 

  53. Li W, Li L, Cao Y et al (2017) Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials. https://doi.org/10.3390/nano7080207

    Article  Google Scholar 

  54. Fonseca C, Ochoa A, Ulloa MT et al (2015) Poly(lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Mater Sci Eng C 57:314–320. https://doi.org/10.1016/j.msec.2015.07.069

    Article  CAS  Google Scholar 

  55. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers (Basel) 6:93–104. https://doi.org/10.3390/polym6010093

    Article  CAS  Google Scholar 

  56. Shankar S, Rhim JW (2019) Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composite films. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100327

    Article  Google Scholar 

  57. Nasab MS, Tabari M, Bidarigh S (2019) Antifungal activity of nano-composite films-based Poly Lactic Acid. Nanomedicine Res J 4:186–192. https://doi.org/10.22034/NMRJ.2019.03.007

  58. Kaviya S, Kabila S, Jayasree KV (2017) Hexagonal bottom-neck ZnO nano pencils: a study of structural, optical and antibacterial activity. Mater Lett 204:57–60. https://doi.org/10.1016/j.matlet.2017.06.018

    Article  CAS  Google Scholar 

  59. Ahi ZB, Renkler NZ, Gul Seker M, Tuzlakoglu K (2019) Biodegradable polymer films with a natural antibacterial extract as novel periodontal barrier membranes. Int J Biomater. https://doi.org/10.1155/2019/7932470

    Article  Google Scholar 

  60. Tajdari A, Babaei A, Goudarzi A, Partovi R (2020) Preparation and study on the optical, mechanical, and antibacterial properties of polylactic acid/ZnO/TiO2 shared nanocomposites. J Plast Film Sheeting 36:285–311. https://doi.org/10.1177/8756087919900365

    Article  CAS  Google Scholar 

  61. Restrepo I, Flores P, Rodríguez-Llamazares S (2018) Antibacterial nanocomposite of poly(Lactic acid) and ZnO nanoparticles stabilized with poly(vinyl alcohol): thermal and morphological characterization. Polym—Plast Technol Eng 58:105–112. https://doi.org/10.1080/03602559.2018.1466168

    Article  CAS  Google Scholar 

  62. Nasab MS, Tabari M (2018) Antimicrobial properties and permeability of Poly lactic Acid nanocomposite films containing Zinc Oxide. Nanomedicine Res J 3:125–132. https://doi.org/10.22034/NMRJ.2018.03.002

  63. Liu C, Shen J, Yeung KWK, Tjong SC (2017) Development and antibacterial performance of novel polylactic acid-graphene oxide-silver nanoparticle hybrid nanocomposite mats prepared by electrospinning. ACS Biomater Sci Eng 3:471–486. https://doi.org/10.1021/acsbiomaterials.6b00766

    Article  CAS  Google Scholar 

  64. Beyth N, Houri-Haddad Y, Domb A et al (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-Based Complement Altern Med. https://doi.org/10.1155/2015/246012

    Article  Google Scholar 

  65. Wicks LF (1941) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study Abbas. Proc Soc Exp Biol Med 48:395–400. https://doi.org/10.3181/00379727-48-13332

    Article  CAS  Google Scholar 

  66. Sánchez-López E, Gomes D, Esteruelas G et al (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10:1–39. https://doi.org/10.3390/nano10020292

    Article  CAS  Google Scholar 

  67. Dhanalakshmi A, Palanimurugan A, Natarajan B (2018) Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles. Mater Sci Eng C 90:95–103. https://doi.org/10.1016/j.msec.2018.04.037

    Article  CAS  Google Scholar 

  68. Rajab FH, Korshed P, Liu Z et al (2019) How did the structural ZnO nanowire as antibacterial coatings control the switchable wettability. Appl Surf Sci 469:593–606. https://doi.org/10.1016/j.apsusc.2018.10.249

    Article  CAS  Google Scholar 

  69. Yang B, Chen Y, Shi J (2019) Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 119:4881–4985. https://doi.org/10.1021/acs.chemrev.8b00626

    Article  CAS  Google Scholar 

  70. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  71. Kumar R, Umar A, Kumar G, Nalwa HS (2017) Antimicrobial properties of ZnO nanomaterials: a review. Ceram Int 43:3940–3961. https://doi.org/10.1016/j.ceramint.2016.12.062

    Article  CAS  Google Scholar 

  72. Zhang L, Jiang Y, Ding Y et al (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanoparticle Res 12:1625–1636. https://doi.org/10.1007/s11051-009-9711-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Center for Advanced Instrumentation (CAI) for the microscope facility and X-ray diffraction facility, National Institute of Technology, Warangal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Venkatappa Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshaykranth, A., Jayarambabu, N., Venkatappa Rao, T. et al. Antibacterial activity study of ZnO incorporated biodegradable poly (lactic acid) films for food packaging applications. Polym. Bull. 80, 1369–1384 (2023). https://doi.org/10.1007/s00289-022-04126-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04126-0

Keywords

Navigation