Skip to main content
Log in

An insight into Ziegler–Natta catalyst active site distribution for polyolefins: application of jitter differential evolution

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Most commercial polyolefins are made with heterogeneous Ziegler–Natta and metallocene catalysts with narrow to broad molecular weight distribution due to the presence of several active sites in the catalyst. We have carried out deconvolution of the molecular weight distribution (MWD) curves from gel permeation chromatography into distributions for individual active sites considering Flory distribution. Polyolefin from three different types of catalysts—(1) propylene and propylene/1-octene copolymer using MgCl2-supported Ti catalyst, (2) linear low-density polyethylene (LLDPE) by silica-supported Ti catalyst and (3) LLDPE by silica-supported metallocene catalyst—is considered for deconvolution studies. A robust jitter differential evolution (JDE) method-based computer algorithm is developed to deconvolute the MWD curves into various Flory distributions. The investigation gave insights on the active sites distribution, peak molecular weight and ratio of termination to propagation rate of each active site. Our analysis has shown that five individual Flory distributions provide PP and LLDPE with better than a 99.9% degree of fit. We have also rolled out this deconvolution method with a simple Excel sheet based input on a cloud-based interface. The results show that JDE approach is a powerful tool to decipher the role of catalyst active sites and correlate with polymer characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali E, Peyman NM (2005) Supported zirconocene catalyst for preventing reactor fouling in ethylene polymerization. Polym Int 54:1326–1329. https://doi.org/10.1002/pi.1851

    Article  CAS  Google Scholar 

  2. Paul JF (1936) Molecular size distribution in linear condensation polymers. J Am Chem Soc 58:1877–1885. https://doi.org/10.1021/ja01301a016

    Article  Google Scholar 

  3. Paul JF (1937) The mechanism of vinyl polymerization1. J Am Chem Soc 59:241–253. https://doi.org/10.1021/ja01281a007

    Article  Google Scholar 

  4. Vickroy VV, Schneider H, Abbott RH (1993) The separation of SEC curves of HDPE into flory distributions. J Appl Polym Sci 50:551–554. https://doi.org/10.1002/app.1993.070500318

    Article  CAS  Google Scholar 

  5. Yury VK, Robert IM, Thomas EN, Anita JB (1999) Kinetics and mechanism of ethylene homopolymerization and copolymerization reactions with heterogeneous Ti-based Ziegler–Natta catalysts. Top Catal 7:69–88. https://doi.org/10.1023/A:1019199330327

    Article  Google Scholar 

  6. Joao BPS (1998) A second look at modeling the multiplicity of active site types of Ziegler–Natta catalysts with Flory’s and Stockmayer’s Distributions. Polym React Eng 6:225–241. https://doi.org/10.1080/10543414.1998.10744491

    Article  Google Scholar 

  7. Keran C, Saeid M, Boping L, Joao BPS (2016) Analysis of ethylene/1-Olefin copolymers made with Ziegler–Natta catalysts by deconvolution of molecular weight and average short chain branching distributions. Macromol React Eng 10:206–214. https://doi.org/10.1002/mren.201500075

    Article  CAS  Google Scholar 

  8. Joao BPS, Abbott RF, Willis JN, Liu X (1996) A new methodology for studying multiple-site-type catalysts for the copolymerization of olefins. Macromol Chem Phys 197:3383–3396. https://doi.org/10.1002/macp.1996.021971025

    Article  Google Scholar 

  9. Duncan ET, Kim BMA, James PML (2007) Exploring reaction kinetics of a multi-site Ziegler–Natta catalyst using deconvolution of molecular weight distributions for ethylene-hexene copolymers. Macromol React Eng 1:264–274. https://doi.org/10.1002/mren.200600028

    Article  CAS  Google Scholar 

  10. Qian S, Igarashi T, Nitta K (2011) Thermal degradation behavior of polypropylene in the melt state: molecular weight distribution changes and chain scission mechanism. Polym Bull 67:1661–1670. https://doi.org/10.1007/s00289-011-0560-6

    Article  CAS  Google Scholar 

  11. Abdulaziz AA, Joao BPS (2009) Simultaneous deconvolution of the bivariate distribution of molecular weight and chemical composition of polyolefins made with Ziegler–Natta catalysts. Macromol Rapid Commun 30:384–393. https://doi.org/10.1002/marc.200800592

    Article  CAS  Google Scholar 

  12. Montserrat F, Márcio N, Príamo AM, José CP (2004) Deconvolution of molecular weight distributions using dynamic Flory-Schulz distributions. Macromol Theory Simul 13:355–364. https://doi.org/10.1002/mats.200300043

    Article  CAS  Google Scholar 

  13. Tarik E, Ausif M (2018) Differential analysis: a survey and analysis. Appl Sci 8:1945–1970. https://doi.org/10.3390/app8101945

    Article  Google Scholar 

  14. Mateus B, Gabriel D, Rafael SP (2020) A GPU-based jDE algorithm applied to continuous unconstrained optimization. In: Abraham A, Cherukuri A, Melin P, Gandhi N (eds) Intelligent systems design and applications: ISDA 2018 2018—advances in intelligent systems and computing. Springer, Cham

    Google Scholar 

  15. Georgioudakis M, Plevris V (2020) A comparative study of differential evolution variants in constrained structural optimization. Front Built Environ 6:102. https://doi.org/10.3389/fbuil.2020.00102

    Article  Google Scholar 

  16. Virendra KG, Harshad RP, Dhananjay GN (2014) Propylene polymerization catalyst system. US8853118 B2

  17. Virendra KG, Sukhdeep K, Harshad RP (2012) A catalyst system for preparation of polyethylene and a method of its preparation. IN 451/MUM/2012

  18. Virendra KG, Rakesh KS, Sangeetha K (2018) A supported metallocene catalyst and a process of preparation thereof, IN201821037600

  19. Gurmeet S, Sukhdeep K, Dhananjay GN, Virendra KG (2010) Evolutionary computing approach for evaluating Flory distribution curves in gel permeation chromatography: study of the poly (1-octene) system. J Appl Polym Sci 117:3379–3385. https://doi.org/10.1002/app.32097

    Article  CAS  Google Scholar 

  20. Deepak D, Simone AL (2014) Differential evolution with dither and annealed scale factor. In: IEEE symposium on differential evolution (SDE) pp. 1–8, https://doi.org/10.1109/SDE.2014.7031528

  21. Brest J, Zamuda A, Fister I, Maučec MS (2010) Large scale global optimization using self-adaptive differential evolution algorithm. In: IEEE congress on evolutionary computation pp. 1–8

  22. Ardia D, Mullen K, Peterson B, Ulrich J, Boudt K (2011) DEoptim: an R package for global optimization by differential evolution. https://cran.r-project.org/web/packages/DEoptim/vignettes/DEoptim.pdf, Accessed 16 November 2020

  23. Soares JBP, Hamielec AE (1995) Deconvolution of chain-length distributions of linear polymers made by multiple-site-type catalysts. Polymer 36(11):2257–2263

    Article  CAS  Google Scholar 

  24. Raffaele C, Jochem TMP, Dario L, Giampiero M, Luigi C (2013) Investigating alkoxysilane coverage and dynamics on the (104) and (110) surfaces of MgCl2-supported Ziegler–Natta catalysts. J Phys Chem C 117:15174–15182. https://doi.org/10.1021/jp308658c

    Article  CAS  Google Scholar 

  25. Jugal K, Virendra KG (2020) Fundamental aspects of heterogeneous Ziegler–Natta olefin polymerization catalysis: an experimental and computational overview. Polym Chem 11:6107–6128. https://doi.org/10.1039/D0PY00753F

    Article  Google Scholar 

  26. Vincenzo B, Mauro C, Roberta C, Raffaele C, Francesco C, Nic F, Raffaele L, Annalaura S, Valeria VAC (2008) Periodic DFT and high-resolution magic-angle-spinning (HR-MAS) 1H NMR Investigation of the active surfaces of MgCl2-Supported ziegler–natta catalysts: the MgCl2 matrix. J Phys Chem C 112:1081–1089. https://doi.org/10.1021/jp076679b

    Article  CAS  Google Scholar 

  27. Denis VS, Vladimir AZ, Alexander GP, Gennady DB (2009) Supported Ziegler–Natta catalysts for propylene polymerization. study of surface species formed at interaction of electron donors and TiCl4 with activated MgCl2. J Catal 266:39–49. https://doi.org/10.1016/j.jcat.2009.05.012

    Article  CAS  Google Scholar 

  28. Raffaele C, Dario L, Zhiqiang F, Giampiero M, Luigi C (2015) Towards a Unified model explaining heterogeneous Ziegler−Natta catalysis. ACS Catal 5:5431–5435. https://doi.org/10.1021/acscatal.5b01076

    Article  CAS  Google Scholar 

  29. Jugal K, Parthiv T, Virendra KG (2019) Role of a multidentate carbonate donor in MgCl2-supported Ziegler−Natta olefin polymerization catalysis: An experimental and computational approach. J Phys Chem C 123:24501–24510. https://doi.org/10.1021/acs.jpcc.9b05405

    Article  CAS  Google Scholar 

  30. Denis VS, Vladimir AZ (2009) Active site formation in MgCl2-supported Ziegler–Natta catalysts: a density functional theory study. J Phys Chem C 113:21376–21382. https://doi.org/10.1021/jp907812k

    Article  CAS  Google Scholar 

  31. Jugal K, Virendra KG, Kumar V (2014) The nature of the active site in Ziegler–Nattaolefin polymerization catalysis systems: a computational investigation. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201402180

    Article  Google Scholar 

  32. Etienne G, Anne L, Sebastien N, Christope C, Vincent M, Philippe S (2013) Tetrahydrofuran in TiCl4/THF/MgCl2: a non-innocent ligand for supported Ziegler−Natta polymerization catalysts. ACS Catal 3:52–56. https://doi.org/10.1021/cs300764h

    Article  CAS  Google Scholar 

  33. Marina IN, Tatiana BM, Mikhail AM, Ludmila EG, Vladimir AZ (2010) Heterogeneity of active sites in Ziegler–Nattacatalyst: the effect of catalyst composition with the MWD of polyethylene. J Appl Polym Sci 115:2432–2439. https://doi.org/10.1039/B417134A

    Article  Google Scholar 

  34. Pengjia Y, Zhisheng F, Zhiqiang F (2018) 1-Hexene polymerization with supported Ziegler–Natta catalyst: correlation between catalyst particle fragmentation and active center distribution. Mol Catal 447:13–20. https://doi.org/10.1016/j.mcat.2017.12.040

    Article  CAS  Google Scholar 

  35. Masahiro K, Tatsuya M, Yukio N, Kooji M (1988) Microtacticity distribution of polypropylenes prepared with heterogeneous Ziegler–Natta catalysts. Macromolecules 21:314–319. https://doi.org/10.1021/ma00180a006

    Article  Google Scholar 

  36. Toru W, Toshiaki T, Iku K, Shougo T, Minoru T (2009) Propylene polymerization performance of isolated and aggregated Ti species studied using a well-designed TiCl3/MgCl2 heterogeneous Ziegler–Natta model catalyst. Macromol Rapid Commun 30:887–891. https://doi.org/10.1002/marc.200900015

    Article  CAS  Google Scholar 

  37. Elena G, Kalaivani S, Erik G, Anna S, Carlo L, Silvia B (2015) Activation and insitu ethylene polymerization of silica supported heterogeneous Ziegler–Natta catalyst. ACS Catal 5:5586–5595. https://doi.org/10.1021/acscatal.5b01108

    Article  CAS  Google Scholar 

  38. Yury VK (1993) Ethylene polymerization kinetics with heterogeneous Ziegler–Natta catalyst. Makrornol Chern Macrornol Syrnp 66:83–94. https://doi.org/10.1002/masy.19930660109|

    Article  Google Scholar 

  39. Muhammed A, Siripon A et al (2014) Silica-supported (nBuCp)2ZrCl2: effect of catalyst active center distribution on ethylene–1-hexene copolymerization. Polym Int 63:955–972. https://doi.org/10.1002/pi.4587

    Article  CAS  Google Scholar 

  40. Marjolein EZV, Ara MM, Abdelkbir B, Michael C, Steve D, Bert MW (2018) The multifaceted role of methylaluminoxane in metallocene-based olefin polymerization catalysis. Macromolecules 51:343–355. https://doi.org/10.1021/acs.macromol.7b02169

    Article  CAS  Google Scholar 

  41. Janne TH, Manfred B, John RS, Mikko L (2014) Formation of octameric methylaluminoxanes by hydrolysis of trimethylaluminum and the mechanisms of catalyst activation in single-site a-olefin polymerization catalysis. ChemPhysChem 15:2732–2742. https://doi.org/10.1002/cphc.201402298

    Article  CAS  Google Scholar 

  42. Muhammad A, Siripon A et al (2015) Supported metallocene catalyst for olefin polymerization. US 2015/0353659 A1

  43. Muhammad A, Zuzana C et al (2015) Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers: evaluation of melt stability by nonisothermal DSC study. J Therm Anal Calorim 119:581–595

    Article  Google Scholar 

  44. Luis AVL, Francisco JEM, Ricardo MC, Florentino SC, Adali CF, Ramon EDLG (2014) Influence of organoboron compounds on ethylene polymerization using Cp2ZrCl2/MAO as catalyst system. Int J Polym Sci. https://doi.org/10.1155/2014/519203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Kumar Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, H.R., Karthikeyan, S., Kote, V. et al. An insight into Ziegler–Natta catalyst active site distribution for polyolefins: application of jitter differential evolution. Polym. Bull. 80, 1425–1445 (2023). https://doi.org/10.1007/s00289-022-04107-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04107-3

Keywords

Navigation