Skip to main content
Log in

Preparation of novel functionalized carbon nanotubes and composite application in polyurethane elastomers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Carbon nanotubes for polyurethane applications have attracted tremendous research interest. This work mainly investigates the preparation of diisocyanate covalently modified multi-walled carbon nanotubes (NCO-MWCNTs) and its application in polyurethane elastomers. MWCNTs were used to react with excessive 4,4′-diphenylmethane diisocyanate (MDI) to prepare NCO-MWCNTs, then novel MWCNTs/polyurethane composites were prepared by grafting NCO-MWCNTs into the polyurethane molecule main chain. The structure and properties of NCO-MWCNTs and the novel MWCNTs/PU composites were characterized by infrared, transmission electron microscopy, Raman, XPS, XRD, TG, and mechanical properties tests. The data showed that MDI molecule was successfully grafted on the surface of MWCNTs and the dispersivity in the matrix was improved. The addition of NCO-MWCNTs weakened the degree of micro-phase separation and increased physical crosslink density in the PU matrix, and significantly increased the tensile strength. When 0.10wt% of NCO-MWCNTs was dispersed in the polyurethane (PU) matrix, the tensile strength of the composites increased by 110% compared with pure PU. Based on the feature of trapping free radicals and inhibiting the thermal cleavage of free radicals for the sp2 hybridized structure of MWCNTs, the tensile strength of MWCNTs/PU (0.10wt%) reaches maximum value for 25 h × 150 ℃, and the blank sample achieves its maximum value for 12 h × 150 ℃. The aging resistance of polyurethane was improved. The electrical conductivity of the PU composites gradually enhanced with an increase of MWCNTs in content, the conductivity of MWCNTs/PU reached 1.68 × 10−4 s cm−1 with 0.20wt% load of NCO-MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pilch-Pitera B, Czachor D, Kowalczyk K, Pavlova E, Wojturski J, Florczak Ł, Byczyński Ł (2019) Conductive polyurethane-based powder clear coatings modified with carbon nanotubes. Prog Org Coat 137:105367. https://doi.org/10.1016/j.porgcoat.2019.105367

    Article  CAS  Google Scholar 

  2. Ma YY, Yi GB, Wang JC, Wang H, Luo HS, Zu XH (2017) Shape-controllable and -tailorable multi-walled carbon nanotube/MnO2/shape-memory polyurethane composite film for supercapacitor. Synthetic Metals 223:67–72. https://doi.org/10.1016/j.synthmet.2016.12.007

    Article  CAS  Google Scholar 

  3. Song HJ, Zhang ZZ, Men XH (2007) Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating. Eur Polymer J 43(10):4092–4102. https://doi.org/10.1016/j.eurpolymj.2007.07.003

    Article  CAS  Google Scholar 

  4. Bai JJ, Hu GS, Zhang JT, Liu BX, Cui JJ et al (2019) Preparation and rheology of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer nanocomposites. J Macromol Sci Part B 58:425–441. https://doi.org/10.1080/00222348.2019.1565102

    Article  CAS  Google Scholar 

  5. Badamshina ER, Gafurova MP, Estrin YI (2010) Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes. Rus Chem Rev 79:945–979. https://doi.org/10.1070/RC2010v079n11ABEH004114

    Article  CAS  Google Scholar 

  6. Wu G, Liu S, Wu X, Ding X (2017) The effect of carbon nanotubes-grafted lactide on the mechanical and thermal properties of poly (lactic acid) biocomposites. J Reinf Plast Compos 36:655–666. https://doi.org/10.1177/0731684417696155

    Article  CAS  Google Scholar 

  7. Li M, Kim IH, Jeong YG (2010) Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical properties. J Appl Polym Sci 118:2475–2481. https://doi.org/10.1002/app.32591

    Article  CAS  Google Scholar 

  8. Wei X, Tao J, Hu Y, Liu Y, Yi J (2021) Enhancement of mechanical properties and conductivity in carbon nanotubes (CNTs)/Cu matrix composite by surface and intratube decoration of CNTs. Mater Sci Eng, A 816:141248. https://doi.org/10.1016/j.msea.2021.141248

    Article  CAS  Google Scholar 

  9. Bitenieks J, Meri R, Zicans J, Maksimovs R, Vasile C, Musteata V (2012) Styrene–acrylate/carbon nanotube nanocomposites: mechanical, thermal, and electrical properties. Proc Est Acad Sci 61:172–177. https://doi.org/10.3176/proc.2012.3.05

    Article  CAS  Google Scholar 

  10. Sun M, Huang S, Yu M, Han K (2021) Toughening modification of polylactic acid by thermoplastic silicone polyurethane elastomer. Polymers 13(12):1953. https://doi.org/10.3390/polym13121953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang HC, Kang B, Chen LS, Lu X (2020) Enhancing toughness of poly (lactic acid)/Thermoplastic polyurethane blends via increasing interface compatibility by polyurethane elastomer prepolymer and its toughening mechanism. Polym Testing 87:106521. https://doi.org/10.1016/j.polymertesting.2020.106521

    Article  CAS  Google Scholar 

  12. Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44(13):2701–2707. https://doi.org/10.1016/j.carbon.2006.04.005

    Article  CAS  Google Scholar 

  13. Kong D, Wang P, Zhao L et al (2021) Fabrication and properties for novel graphene oxide powder with extra large interlayer spacing and high reactivity. J Macromol Sci 58:156–164. https://doi.org/10.1080/10601325.2020.1832519

    Article  CAS  Google Scholar 

  14. Lotya M, King PJ, Khan U et al (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162. https://doi.org/10.1021/nn1005304

    Article  CAS  PubMed  Google Scholar 

  15. Zheng F, Jiang P, Hu L, Bao Y, Xia J (2019) Functionalization of graphene oxide with different diisocyanates and their use as a reinforcement in waterborne polyurethane composites. J Macromol Sci Part A 56:1071–1081. https://doi.org/10.1080/10601325.2018.1477479

    Article  CAS  Google Scholar 

  16. Tripathi SN, Singh S, Malik RS et al (2014) Effect of multiwalled carbon nanotubes on the properties of Poly(methyl methacrylate) in PMMA/CNT nanocomposites. Macromol Symp 341:75–89. https://doi.org/10.1002/masy.201400012

    Article  CAS  Google Scholar 

  17. Lee SW, Lee YH, Park H, Kim HD (2013) Effect of total acrylic/fluorinated acrylic monomer contents on the properties of waterborne polyurethane/acrylic hybrid emulsions. Macromol Res 21:709–718. https://doi.org/10.1007/s13233-013-1122-6

    Article  CAS  Google Scholar 

  18. Lin P, Meng L, Huang Y, Liu L, Fan D (2015) Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups. Appl Surf Sci 324:784–790. https://doi.org/10.1016/j.apsusc.2014.11.038

    Article  CAS  Google Scholar 

  19. Kumar M, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis of graphene–polyurethane nanocomposite using highly functionalized graphene oxide as pseudo-crosslinker. Mater Lett 106:319–321. https://doi.org/10.1016/j.matlet.2013.05.059

    Article  CAS  Google Scholar 

  20. Zhang LB, Wang JQ, Wang HG, Xu Y, Wang ZF, Li ZP, Yang SR (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos Part A-Appl Sci Manuf 43:1537–1545. https://doi.org/10.1016/j.compositesa.2012.03.026

    Article  CAS  Google Scholar 

  21. Wu JH, Li CH, Wu YT, Leu MT, Tsai Y (2010) Thermal resistance and dynamic damping properties of poly (styrene–butadiene–styrene)/thermoplastic polyurethane composites elastomer material. Compos Sci Technol 70:1258–1264. https://doi.org/10.1016/j.compscitech.2010.03.014

    Article  CAS  Google Scholar 

  22. Gigliotti M, Olivier L, Vu DQ, Grandidier JC, Christine Lafarie-Frenot M (2011) Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures. J Mech Phys Sol 59:696–712. https://doi.org/10.1016/j.jmps.2010.12.001

    Article  CAS  Google Scholar 

  23. Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 90:211–268. https://doi.org/10.1016/j.progpolymsci.2018.12.003

    Article  CAS  Google Scholar 

  24. Yang L, Zhang S, Chen Z, Guo Y, Luan J, Geng Z, Wang G (2014) Design and preparation of graphene/poly(ether ether ketone) composites with excellent electrical conductivity. J Mater Sci 49:2372–2382. https://doi.org/10.1007/s10853-013-7940-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was financial support by the National Nature Science Foundation of China (Grant No.21676150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaifeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Kong, D., Zhang, Z. et al. Preparation of novel functionalized carbon nanotubes and composite application in polyurethane elastomers. Polym. Bull. 79, 11139–11155 (2022). https://doi.org/10.1007/s00289-022-04083-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04083-8

Keywords

Navigation