Skip to main content

Advertisement

Log in

Doping mechanism and optical properties of as-prepared polyvinyl chloride (PVC) doped by iodine thin films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the complex composite thin films based on polyvinyl chloride (PVC) doped with different iodine (I2) concentrations are deposited on a glass substrate. The doping mechanism and chemical properties for the PVC–I2 complex composites are studied using FTIR and UV–Vis absorbance spectroscopies, in addition to TGA. Optical and optoelectronic properties of the composite thin films are deduced using UV–Vis spectroscopy’s experimental transmittance and reflectance spectra and combining classical and quantum models. The optical bandgap energy of PVC film is found to be 4.01 eV. Introducing I2 to PVC films decreases bandgap energy, and thus, bandgap engineering is possible. The refractive of PVC thin film exhibits in the 1.66–2.01 range, as the wavelength decreases from 700 to 350 nm. In addition, it increases as the concentration of I2 in the polymeric matrix increases gradually to 7 wt%. The findings of this work demonstrate that optical, chemical, and thermal properties of PVC–I2 thin films can be significantly modified upon introducing an appropriate concentration of I2 nanofiller into the PVC polymeric matrix. Finally, doping mechanisms of iodine are crucial for the optical and electrical large free-volume PVC polymeric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Alsaad, Q. M. Al-Bataineh, A. Ahmad, I. Jum’h, N. Alaqtash, and A. Bani-Salameh (2020), "Optical properties of transparent PMMA-PS/ZnO NPs polymeric nanocomposite films: UV-Shielding applications," Mater Res Express, 6(12), 126446.

  2. Al-Bataineh QM, Alsaad A, Ahmad A, Telfah A (2020) A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles. Heliyon 6(6):e04177

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brechtl J et al (2021) Structural, thermal, and mechanical characterization of a thermally conductive polymer composite for heat exchanger applications. Polymers 13(12):1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Awad SA, Khalaf EM (2019) Investigation of improvement of properties of polypropylene modified by nano silica composites. Compos Commun 12:59–63

    Article  Google Scholar 

  5. Wang Q, Storm BK (2005) Separation and analysis of low molecular weight plasticizers in poly (vinyl chloride) tubes. Polym Test 24(3):290–300

    Article  CAS  Google Scholar 

  6. Mkhabela V, Mishra A, Mbianda X (2011) Thermal and mechanical properties of phosphorylated multiwalled carbon nanotube/polyvinyl chloride composites. Carbon 49(2):610–617

    Article  CAS  Google Scholar 

  7. Broza G, Piszczek K, Schulte K, Sterzynski T (2007) Nanocomposites of poly (vinyl chloride) with carbon nanotubes (CNT). Compos Sci Technol 67(5):890–894

    Article  CAS  Google Scholar 

  8. Sterzyński T, Tomaszewska J, Piszczek K, Skórczewska K (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70(6):966–969

    Article  Google Scholar 

  9. C. Wilkes, J. Summers, C. Daniels, and M. Berard (2005), "PVC Handbook, Hanser,"

  10. A. Telfah et al. (2021), "Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films," Polymer Bulletin, pp. 1–20, 2021.

  11. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5):5154–5163

    Article  CAS  PubMed  Google Scholar 

  12. El-Ghamaz N, Ghaly H (2016) Effect of chemical and physical doping with iodine on the optical and dielectric properties of poly (vinyl chloride). Chem Phys Lett 648:66–74

    Article  CAS  Google Scholar 

  13. Yousif E, Asaad N, Ahmed DS, Mohammed SA, Jawad AH (2019) A spectral, optical, microscopic study, synthesis and characterization of PVC films containing Schiff base complexes. Baghdad Sci J 16(1):0056

    Article  Google Scholar 

  14. Qi Y et al (2018) A novel treatment method of PVC-medical waste by near-critical methanol: dechlorination and additives recovery. Waste Manage 80:1–9

    Article  CAS  Google Scholar 

  15. Soler A, Conesa JA, Ortuño N (2018) Application of subcritical water to dechlorinate polyvinyl chloride electric wires. Energies 11(10):2612

    Article  Google Scholar 

  16. Daniels PH (2009) A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction. J Vinyl Add Tech 15(4):219–223

    Article  CAS  Google Scholar 

  17. A. Lakhdar, M. Jammoukh, L. Zahiri, K. Mansouri, A. Moumen, and B. Salhi (2020), "Numerical and experimental study of the behavior of pvc material subjected to aging," in 2020 1st international conference on innovative research in applied science, engineering and technology (IRASET), 2020: IEEE, pp. 1–6.

  18. Zhang M et al (2020) Pentaerythritol p-hydroxybenzoate ester-based zinc metal alkoxides as multifunctional antimicrobial thermal stabilizer for PVC. Polym Degrad Stab 181:109340

    Article  CAS  Google Scholar 

  19. Rastogi A, Chopra K (1975) Electrical conduction mechanism in solution grown thin polyvinylchloride (PVC) films. Thin Solid Films 26(1):61–76

    Article  CAS  Google Scholar 

  20. Rajendran S, Babu RS, Rani MU (2011) Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes. Bull Mater Sci 34(7):1525–1530

    Article  CAS  Google Scholar 

  21. Salzmann I, Heimel G, Oehzelt M, Winkler S, Koch N (2016) Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc Chem Res 49(3):370–378

    Article  CAS  PubMed  Google Scholar 

  22. Chand S, Kumar N (1989) Effect of iodine doping on electrical conduction in PVB films. J Mater Sci Lett 8(9):1009–1010

    Article  CAS  Google Scholar 

  23. Bazaka K, Jacob MV (2017) Effects of iodine doping on optoelectronic and chemical properties of polyterpenol thin films. Nanomaterials 7(1):11

    Article  PubMed Central  Google Scholar 

  24. Aspnes DE, Studna A (1983) Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Phys Rev B 27(2):985

    Article  CAS  Google Scholar 

  25. Gabes W, Stufkens D (1974) Electronic absorption spectra of symmetrical and asymmetrical trihalide ions. Spectrochim Acta, Part A 30(9):1835–1841

    Article  Google Scholar 

  26. Zidan HM, Abdelrazek EM, Abdelghany AM, Tarabiah AE (2019) Characterization and some physical studies of PVA/PVP filled with MWCNTs. J Market Res 8(1):904–913

    CAS  Google Scholar 

  27. Voigt E (1968) Absorption maxima of the visible band of iodine in different groups of solvents. J Phys Chem 72(9):3300–3305

    Article  CAS  Google Scholar 

  28. Naorem H, Devi SD (2013) Spectrophotometric determination of the formation constant of triiodide ions in aqueous-organic solvent or polymer mixed media both in absence and presence of a surfactant. Spectrochim Acta Part A Mol Biomol Spectrosc 101:67–73

    Article  CAS  Google Scholar 

  29. Wu G, Jia Z, Zhou X, Nie G, Lv H (2020) Interlayer controllable of hierarchical MWCNTs@ C@ FexOy cross-linked composite with wideband electromagnetic absorption performance. Compos Part A: Appl Sci Manuf 128:105687

    Article  CAS  Google Scholar 

  30. Kim K-I et al (2019) Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci Rep 9(1):1–11

    Google Scholar 

  31. Seto M, Maeda Y, Matsuyama T, Yamaoka H, Sakai H (1993) Mössbauer spectroscopic study of fullerene C60 doped with iodine. Nucl Instrum Methods Phys Res, Sect B 76(1–4):348–349

    Article  Google Scholar 

  32. Karlsen EM, Spanget-Larsen J (2009) FTIR investigation of the reaction between pyridine and iodine in a polyethylene host. Formation of N-iodopyridinium polyiodide. Chem Phys Lett 473(4–6):227–232

    Article  CAS  Google Scholar 

  33. El-Ghamaz N, El-Sonbati A, Diab M, El-Bindary A, Mohamed G, Morgan SM (2015) Correlation between ionic radii of metal azo dye complexes and electrical conductivity. Spectrochim Acta Part A Mol Biomol Spectrosc 147:200–211

    Article  CAS  Google Scholar 

  34. J. Tauc (2012), Amorphous and liquid semiconductors. Springer Science & Business Media

  35. Alsaad A, Ahmad A, Qattan I, Al-Bataineh QM, Albataineh Z (2020) Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped ZnO and group III elements (B, Al, Ga, and In)-doped ZnO thin films. Curr Comput-Aided Drug Des 10(4):252

    CAS  Google Scholar 

  36. Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog Polym Sci 27(1):135–190

    Article  CAS  Google Scholar 

  37. Bredas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18(10):309–315

    Article  CAS  Google Scholar 

  38. Brédas J-L, Scott J, Yakushi K, Street G (1984) Polarons and bipolarons in polypyrrole: evolution of the band structure and optical spectrum upon doing. Phys Rev B 30(2):1023

    Article  Google Scholar 

  39. Jarząbek B, Hajduk B, Jurusik J, Domański M (2017) In situ optical studies of thermal stability of iodine-doped polyazomethine thin films. Polym Testing 59:230–236

    Article  Google Scholar 

  40. Nishio M (2011) The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys 13(31):13873–13900

    Article  CAS  PubMed  Google Scholar 

  41. Al-Bataineh QM, Ahmad AA, Alsaad A, Telfah AD (2021) Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model. Heliyon 7(1):e05952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92(5):1324

    Article  CAS  Google Scholar 

  43. Parmar R, Kundu R, Punia R, Aghamkar P, Kishore N (2014) Iron modified structural and optical spectral properties of bismuth silicate glasses. Physica B 450:39–44

    Article  CAS  Google Scholar 

  44. Melsheimer J, Ziegler D (1985) Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide. Thin Solid Films 129(1–2):35–47

    Article  CAS  Google Scholar 

  45. Ikhmayies SJ, Ahmad-Bitar RN (2013) A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: in thin films. J Market Res 2(3):221–227

    CAS  Google Scholar 

  46. Aly K, Elnaeim AA, Uosif M, Abdel-Rahim O (2011) Optical properties of Ge–As–Te thin films. Physica B 406(22):4227–4232

    Article  CAS  Google Scholar 

  47. Q. M. Al-Bataineh et al. (2020), "Synthesis, crystallography, microstructure, crystal defects, optical and optoelectronic properties of ZnO: CeO2 mixed oxide thin films," in Photonics, 2020, vol. 7, no. 4: Multidisciplinary Digital Publishing Institute, p. 112.

  48. Askari M, Soltani N, Saion E, Yunus WMM, Erfani HM, Dorostkar M (2015) Structural and optical properties of PVP-capped nanocrystalline ZnxCd1− xS solid solutions. Superlattices Microstruct 81:193–201

    Article  CAS  Google Scholar 

  49. Dhahri I et al (2022) Optical and structural properties of ZnO NPs and ZnO–Bi2O3 nanocomposites. Ceram Int 48(1):266–277

    Article  CAS  Google Scholar 

  50. Alsaad AM et al (2020) Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) Co-doped ZnO thin films. Materials 13(7):1737

    Article  CAS  PubMed Central  Google Scholar 

  51. Davis E, Mott N (1970) Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil Mag 22(179):0903–0922

    Article  CAS  Google Scholar 

  52. N. F. Mott and E. A. Davis (2012), Electronic processes in non-crystalline materials. Oxford university press.

  53. Duerloo K-AN, Ong MT, Reed EJ (2012) Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett 3(19):2871–2876

    Article  CAS  Google Scholar 

  54. Ahmad A, Alsaad A, Al-Bataineh Q, Al-Naafa M (2018) Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl Phys A 124(6):458

    Article  Google Scholar 

  55. Alsaad A et al (2018) Crystallographic, vibrational modes and optical properties data of α-DIPAB crystal. Data Brief 16:667–684

    Article  PubMed  Google Scholar 

  56. Oubaha M, Elmaghrum S, Copperwhite R, Corcoran B, McDonagh C, Gorin A (2012) Optical properties of high refractive index thin films processed at low-temperature. Opt Mater 34(8):1366–1370

    Article  CAS  Google Scholar 

  57. B. T. Sutcliffe and S. Wilson (2003), "Potential energy curves and surfaces," handbook of molecular physics and quantum chemistry, pp. 574–587

  58. Wemple S, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3(4):1338

    Article  Google Scholar 

  59. Fu DW, Zhang W, Cai HL, Ge JZ, Zhang Y, Xiong RG (2011) Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv Mater 23(47):5658–5662

    Article  CAS  PubMed  Google Scholar 

  60. A. S. Hassanien and I. Sharma (2019), "Optical properties of quaternary a-Ge15-x Sbx Se50 Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters," Optik, 163415.

  61. Alsaad A, Al-Bataineh QM, Ahmad A, Albataineh Z, Telfah A (2020) Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211:164641

    Article  CAS  Google Scholar 

  62. Hassanien AS, Akl AA (2015) Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50–xSex thin films. J Alloy Compd 648:280–290

    Article  CAS  Google Scholar 

  63. Abd-Elnaiem AM, Hassan R, Alamri HR, Assaedi HS (2020) Comparative investigation of linear and nonlinear optical properties of As–70 at% Te thin films: influence of Ga content. J Mater Sci: Mater Electron 31(16):13204–13218

    CAS  Google Scholar 

  64. El Radaf I, Al-Zahrani H, Hassanien AS (2020) Novel synthesis, structural, linear and nonlinear optical properties of p-type kesterite nanosized Cu 2 MnGeS 4 thin films. J Mater Sci: Mater Electron 31(11):8336–8348

    Google Scholar 

  65. Penn DR (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev 128(5):2093

    Article  CAS  Google Scholar 

  66. French RH, Müllejans H, Jones DJ (1998) Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J Am Ceram Soc 81(10):2549–2557

    Article  CAS  Google Scholar 

  67. Reidinger M, Rydzek M, Scherdel C, Arduini-Schuster M, Manara J (2009) Low-emitting transparent coatings based on tin doped indium oxide applied via a sol–gel routine. Thin Solid Films 517(10):3096–3099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the deanship of scientific research at Jordan University of Science and Technology for financial, technical, and logistic support. Special acknowledgments are forwarded to Borhan A. Albiss and Mohammad A. Al-Omari at the Department of Physics, Jordan University of Science and Technology, for the access provided for their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Alsaad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telfah, M., Ahmad, A.A., Alsaad, A.M. et al. Doping mechanism and optical properties of as-prepared polyvinyl chloride (PVC) doped by iodine thin films. Polym. Bull. 79, 10803–10822 (2022). https://doi.org/10.1007/s00289-022-04082-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04082-9

Keywords

Navigation