Skip to main content
Log in

Preparation and properties of self-healing polyurethane without external stimulation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, a self-repairing polyurethane without external stimulation was synthesized. First, a reversible acyl hydrazone bond was introduced into the polyurethane molecular chain. The bond could be dynamically reversible under acidic stimulation to repair the material damage. After that, different contents of bis(2-ethylhexyl) phosphate components were added to modify the material in the synthesis, and its performance was compared to pure polyurethane (PU-0). The polymer was tested using digital viscometer, differential scanning calorimeter (DSC), thermogravimetric analysis (TG), tensile test, etc. The results showed that the addition of bis(2-ethylhexyl) phosphate can promote the healing of the material, so that the synthetic polyurethane material can be repaired to a certain extent without external stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lin CH, Sheng DK, Liu XD et al (2018) NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels-Alder reaction. Polymer 140:150–157

    CAS  Google Scholar 

  2. Yoshie N, Watanabe M, Araki H et al (2010) Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: Polymers from bisfuranic terminated poly(ethylene adipate)and tris-maleimide. Polym Degrad Stab 95:826–829

    CAS  Google Scholar 

  3. Turkenburg DH, Bracht HV, Funke B, Schmider M, Janke D, Fischer HR (2017) Polyurethane adhesives containing Diels-Alder based thermo-reversible bonds. Appl Polym Sci 134:44972

    Google Scholar 

  4. Galhenage TP, Hoffman D, Silbert SD et al (2016) Fouling-release performance of silicone oil-modified siloxane-polyurethane coatings. ACS Appl Mater Interfaces 8:29025–29036

    CAS  PubMed  Google Scholar 

  5. Cornille A, Guillet C, Benyahya S et al (2016) Room temperature flexible isocyanate-free polyurethane foams. Eur Polym J 84:873–888

    CAS  Google Scholar 

  6. Burattini S, Greenland BW, Chappell D et al (2010) Healable polymeric materials: a tutorial review. Chem Soc Rev 39:1973–1985

    CAS  PubMed  Google Scholar 

  7. Garrido MA, Gerecke AC, Heeb N et al (2017) Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam. Chemosphere 168:667–675

    CAS  PubMed  Google Scholar 

  8. Martin P (1997) Wound healing-aiming for perfect skin regeneration. Science 276:75–81

    CAS  PubMed  Google Scholar 

  9. Wilson GO, Moore JS, White SR, Andersson HM et al (2008) Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv Funct Mater 18:44–52

    CAS  Google Scholar 

  10. Bleay SM, Loader CB, Hawyes VJ et al (2001) A smart repair system for polymer matrix composites. Compos PartA-Appl S 32:1767–1776

    Google Scholar 

  11. Toohey KS, Sottos NR, Lewis JA et al (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585

    CAS  PubMed  Google Scholar 

  12. Williams HR, Trask RS, Bond IP (2008) Self-healing sandwich panels: Restoration of compressive strength after impact. Compos Sci Technol 68:3171–3177

    CAS  Google Scholar 

  13. Watanabe M, Yoshie N (2006) Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers. Polymer 47:4946–4952

    CAS  Google Scholar 

  14. Deng G, Tang C, Li F et al (2010) Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43:1191–1194

    CAS  Google Scholar 

  15. Yuan C, Rong MZ, Zhang MQ (2014) Self-healing polyurethane elastomer with thermally reversible alkoxyamines ascrosslinkages. Polymer 55(7):1782–1791

    CAS  Google Scholar 

  16. Li JH, Zhang GP, Sun R et al (2018) Self-healing and shape memory linear polyurethane based on disulfide linkages with excellent mechanical property. Macromol Res 26:365–373

    Google Scholar 

  17. Marschner DE, Frisch H, Offenloch JT et al (2018) Visible light [2 + 2] cycloadditions for reversible polymer ligation. Macromolecules 51:3802–3807

    CAS  Google Scholar 

  18. Xiang Z, Zhang L, Yuan T et al (2018) Healability demonstrates enhanced shape-recovery of graphene-oxide-reinforced shape-memory polymeric films. ACS Appl Mater Interfaces 10:2897–2906

    CAS  PubMed  Google Scholar 

  19. Yang L, Lu XL, Wang ZH et al (2018) Diels-Alder dynamic crosslinked polyurethane/ polydopamine composites with NIR triggeredself-healing function. Polym Chem 9:2166–2172

    CAS  Google Scholar 

  20. Duarah R, Karak N (2018) High performing smart hyperbranched polyurethane nanocomposites with efficient self-healing, self-cleaning and photocatalytic attributes. New J Chem 42:2167–2179

    CAS  Google Scholar 

  21. Li JH, Liu Q, Ho D et al (2018) Three-dimensional graphene structure for healable flexible electronics based on Diels−Alder chemistry. ACS Appl Mater Interfaces 10:9727–9735

    CAS  PubMed  Google Scholar 

  22. Yang YL, Lu X, Wang WW (2017) A tough polyurethane elastomer with self-healing ability. Mater Des 127:30–36

    CAS  Google Scholar 

  23. Feng LB, Yu ZY, Bian YH et al (2017) Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains. Polymer 124:48–59

    CAS  Google Scholar 

  24. Jian XX, Hu YW, Zhou WL et al (2018) Self-healing polyurethane based on disulfide bond and hydrogen bond. Polym Adv Technol 29:463–469

    CAS  Google Scholar 

  25. Cheng CJ, Li J, Yang FH, Wang JL et al (2018) Renewable eugenol-based functional polymers with self-healing and high temperature resistance properties. J Polym Res 25:57

    Google Scholar 

  26. Wu XX, Li JH, Li G et al (2018) Heat-triggered poly(siloxane-urethane)s based on disulfide bonds for self-healing application. J Appl Polym Sci 135:46532

    Google Scholar 

  27. Ma XY, Shi CY, Huang XW et al (2019) Effect of natural melanin nanoparticles on a self-healing cross-linked polyurethane. Polym J 51:547–558

    CAS  Google Scholar 

  28. Chang R, Wang X, Li X et al (2016) Self-activated healable hydrogels with reversible temperature responsiveness. ACS Appl Mater Interfaces 8:25544–25551

    CAS  PubMed  Google Scholar 

  29. Wang L, Deng F, Wang W et al (2018) Construction of injectable self-healing Macroporous hydrogels via a template-free method for tissue engineering and drug delivery. ACS Appl Mater Interfaces 10:36721–36732

    CAS  PubMed  Google Scholar 

  30. Ruff Y, Lehn JM (2008) Glycodynamers: fluorescent dynamic analogues of polysaccharides. Angew Chem Int Ed 47(19):3556–3559

    CAS  Google Scholar 

  31. He L, Jiang Y, Tu C et al (2010) Self-assembled encapsulation systems with pH tunable release property based on reversible covalent bond. Chem Commun 46(40):7569–7571

    CAS  Google Scholar 

  32. Deng G, Li F, Yu H et al (2012) Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol−gel transitions. ACS Macro Lett 1:275–279

    CAS  PubMed  Google Scholar 

  33. Zhang P, Deng F, Peng Y et al (2014) Redox- and pH-responsive polymer gels with reversible sol–gel transitions and self-healing properties. RSC Adv 4:47361–47367

    CAS  Google Scholar 

  34. Lu S, Bai X, Liu H et al (2017) An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair. J Mater Chem B 5:3739–3748

    CAS  PubMed  Google Scholar 

  35. Wang Y, Yu H, Yang H et al (2017) an injectable interpenetrating polymer network hydrogel with tunable mechanical properties and self-healing abilities. Macromol Chem Phys 218:1700348

    Google Scholar 

  36. Huang X, Wang X, Shi C, Liu Y, Wei Y (2021) Research on synthesis and self-healing properties of interpenetrating network hydrogels based on reversible covalent and reversible non-covalent bonds. J Polym Res 28(1):1–13

    Google Scholar 

  37. Ma X, Shi C, Huang X, Liu Y, Wei Y (2019) Effect of natural melanin nanoparticles on a self-healing cross-linked polyurethane. Polym J 51(6):547–558

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51103078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Shi, C., Zhang, Z. et al. Preparation and properties of self-healing polyurethane without external stimulation. Polym. Bull. 79, 10723–10739 (2022). https://doi.org/10.1007/s00289-022-04075-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04075-8

Keywords

Navigation