Skip to main content
Log in

Fabrication of PA6/MoS2 nanocomposites via melt blending of PA6 with PA6/PEG modified-MoS2 masterbatch

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Modified MoS2 (mMoS2) was prepared by reacting MoS2 with alkyl lithium and amine-terminated long-chain polyethylene glycol (APEG) derivatives via a one-pot modification process. The APEG on the surface of MoS2 greatly limits the aggregation of MoS2. After that, polyamide 6 (PA6)/mMoS2 masterbatch was prepared via a solution mixing of mMoS2 and PA6. Then, the PA6/mMoS2 nanocomposites were fabricated through melt blending of masterbatch and commercial PA6. The structure and properties of mMoS2 and PA6/mMoS2 composites were investigated. The thermal stability and glass transition temperature of the PA6/mMoS2 composites were slightly improved, and their tensile strength, Young’s modulus and storage modulus of PA6/mMoS2 composites increased by up to 57, 110 and 200%, respectively, compared to those of the pristine PA6. Therefore, this study provides a convenient method for achieving enhanced interaction between the polymer chains and MoS2, and APEG modification would be an effective method for producing well-dispersed MoS2 composites with high thermal stability and excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pham VH, Cuong TV, Dang TT, Hur SH, Kong BS, Kim EJ, Shin EW, Chung JS (2011) Superior conductive polystyrene–chemically converted graphene nanocomposite. J Mater Chem 21:11312–11316

    Article  CAS  Google Scholar 

  2. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenge and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926

    Article  CAS  PubMed  Google Scholar 

  3. Xu MS, Liang T, Shi MM, Chen H (2013) Graphene-like two dimensional materials. Chem Rev 113:3766–3798

    Article  CAS  PubMed  Google Scholar 

  4. Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/Polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184

    Article  CAS  PubMed  Google Scholar 

  5. Bindumadhavan K, Srivastava SK, Mahanty S (2013) MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Commun 49:1823–1825

    Article  CAS  Google Scholar 

  6. Zhou W, Yin Z, Du Y, Huang X, Zheng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147

    Article  CAS  PubMed  Google Scholar 

  7. Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  CAS  Google Scholar 

  8. He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H (2012) Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8:2994–2999

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Xing WY, Feng XM, Yu B, Song L, Yeoh GH, Hu Y (2016) Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Compo Sci Technol 127:142–148

    Article  CAS  Google Scholar 

  11. Peng HY, Wang D, Li M, Zhang LP, Liu MM, Fu SH (2019) N-P-Zn-containing 2D super molecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber. Chem Eng J 372:873–885

    Article  CAS  Google Scholar 

  12. Peng H, Wang D, Fu S (2020) tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers. Chem Eng J 384:123288

    Article  CAS  Google Scholar 

  13. Chou SS, De M, Kim J, Byun S, Dykstra C, Yu J, Huang JX, Dravid VP (2013) Ligand conjugation of chemically exfoliated MoS2. J Am Chem Soc 135:4584–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng Z, He B, Zhou L (2015) A general one-step approach for in situ decoration of MoS2 nanosheets with inorganic nanoparticles. J Mater Chem A 3:1042–1048

    Article  CAS  Google Scholar 

  15. Presolski S, Pumera M (2016) Covalent functionalization of MoS2. Mater Today 19:140–145

    Article  CAS  Google Scholar 

  16. Chou SS, De M, Kim J, Byun S, Dykstra C, Yu J, Haung J, Dravid VP (2013) Ligand conjugation of chemically exfoliated MoS2. J Am Chem Soc 135:4584–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou I, He B, Yang Y, He Y (2014) Facile approach to surface functionalized MoS2 nanosheets. RSC Adv 4:32570–32578

    Article  CAS  Google Scholar 

  18. Velusamy DB, Kim RH, Cha S, Huh J, Khazaeinezhad R, Kassani SH, Song G, Cho SM, Cho SH, Hwang I, Lee J, Oh K, Choi H, Park C (2015) Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat Commun 6:8063

    Article  PubMed  Google Scholar 

  19. Kim RH, Lee J, Kim KL, Cho SM, Kim DH, Park C (2017) Flexible nonvolatile transistor memory with solution-processed transition metal dichalcogenides. Small 13:1603971

    Article  Google Scholar 

  20. Malkappa K, Ray SS, Kumar N (2019) Enhanced thermo-mechanical stiffness, thermal stability, and fire-retardant performance of surface-modified 2D MoS2 nanosheet-reinforced polyurethane composites. Macro Mater Eng 304:1800562

    Article  Google Scholar 

  21. Zhang H, Moon YK, Zhang XQ, Liu JS, Zhang HX, Yoon KB (2017) Facile preparation of functionalized MoS2/polyethylene nanocomposites through in situ polymerization with MoS2 containing Ziegler-Natta catalyst. Eur Polym J 87:60–68

    Article  CAS  Google Scholar 

  22. Zhang HX, Ko EB, Park JH, Moon YK, Park BS, Zhang XQ, Yoon KB (2017) Preparation and properties of polyethylene/dodecanethiol-MoS2 nanocomposites with dodecanethiol-MoS2/MgCl2-supported Ziegler-Natta catalyst via an in situ polymerization method. Polymer 108:223–229

    Article  CAS  Google Scholar 

  23. Zhang HX, Ko EB, Park JH, Moon YK, Zhang XQ, Yoon KB (2016) Fabrication of Polyethylene/MoS2 nanocomposites using a novel exfoliated-MoS2-MgCl Bi-supported Ziegler-Natta catalyst via in-situ polymerization. Compos Sci Technol 137:9–15

    Article  CAS  Google Scholar 

  24. Ren Y, Zhang Y, Guo H, Lv R, Bai SL (2019) A double mixing process to greatly enhance thermal conductivity of graphene filled polyamide 6 composites. Compos Part A: Appl Sci Manuf 126:105578

    Article  CAS  Google Scholar 

  25. Hwang SH, Kim BJ, Baek JB, Shin HS, Bae IJ, Lee SY, Park YB (2016) Effects of process parameters and surface treatments of graphene nanoplatelets on the crystallinity and thermomechanical properties of polyamide 6 composite fibers. Compos Part B: Eng 100:220–227

    Article  CAS  Google Scholar 

  26. Dencheva N, Gaspar H, Filonovich S, Lavrova O, Busani T, Bernardo G, Denchev Z (2014) Fullerene-modified polyamide 6 by in situ anionic polymerization in the presence of PCBM. J Mater Sci 49:4751–4764

    Article  CAS  Google Scholar 

  27. Leonov D, Ustinova T, Levkina N, Mostovoy A, Lopukhova M (2020) Features of forming the structure and properties of polyamide-6 via in situ polymerization with oxidized graphite. J Polym Res 27:273

    Article  CAS  Google Scholar 

  28. Yoon J, Shin J, Lim J, Mohammadniaei M, Bapurao GB, Lee T, Choi J (2017) Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloid Surf B: Bioint 159:729–736

    Article  CAS  Google Scholar 

  29. Lau THM, Lu XW, Kulhavý J, Wu S, Lu L, Wu TS, Kato R, Foord JS, Soo YL, Suenaga K, Tsang SCE (2018) Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem Sci 9:4769–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Yin Z, He Q, Li H, Huang X, Lu G, Wen D, Fam DWH, Tok ALY, Zhang Q, Zhang H (2012) Fabrication of single and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8:63–67

    Article  CAS  PubMed  Google Scholar 

  31. Jing Q, Liu W, Pan Y, Silberschmidt VV, Li L, Dong Z (2015) Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites. Mater Des 85:808–814

    Article  CAS  Google Scholar 

  32. O’Neill A, Bakirtzis D, Dixon D (2014) Polyamide 6/Graphene composites: the effect of in situ polymerization on the structure and properties of graphene oxide and reduced graphene oxide. Eur Polym J 59:353–362

    Article  Google Scholar 

  33. Zhang X, Fan X, Li H, Yan C (2012) Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J Mater Chem 22:24081–24091

    Article  CAS  Google Scholar 

  34. Nguyen DM, Jeong H, Nguyen TKN, Nguyen TML, Do TVV, Thuc CNH, Perré P, Ko SC, Kim HG, Tran DT (2019) Polyethylene glycol functionalized graphene oxide and its influences on properties of Poly(lactic acid) biohybrid materials. Compos Part B: Eng 161:651–658

    Article  CAS  Google Scholar 

  35. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45:967–984

    Article  CAS  Google Scholar 

  36. Wang X, Hu YA, Song L, Yang HY, Xing WY, Lu HD (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222–4227

    Article  CAS  Google Scholar 

  37. Zhou KQ, Jiang SH, Shi YQ, Liu JJ, Wang B, Hu Y, Gui Z (2014) Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv 4:40170–40180

    Article  CAS  Google Scholar 

  38. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010

    Article  CAS  Google Scholar 

  39. Castellanos-Gomez A, Poot M, Steele GA, van der Zant HSJ, Agrait N, Rubio-Bollinger G (2012) Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24:772–775

    Article  CAS  PubMed  Google Scholar 

  40. Castellanos-Gomez A, Poot M, Steele GA, van der Zant HSJ, Agrait N, Rubio-Bollinger G (2012) Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res Lett 7:1–4

    Article  Google Scholar 

  41. Zhang HX, Ko EB, Park JH, Moon YK, Zhang XQ, Yoon KB (2017) Preparation and properties of PE/MoS2 nanocomposites with an exfoliated-MoS2/MgCl2-supported Ziegler-Natta catalyst via an in-situ polymerization. Compos Part A: Appl Sci Manuf 93:82–87

    Article  CAS  Google Scholar 

  42. Feng XM, Xing WY, Yang HY, Yuan BH, Song L, Hu Y, Liew KM (2015) Highperformance poly(ethylene oxide)/molybdenum disulfide nanocomposite films: reinforcement of properties based on the gradient interface effect. ACS Appl Mater Inter 7:13164–13173

    Article  CAS  Google Scholar 

  43. Xin Y, Li T, Gong D, Xu F, Wang M (2017) Preparation and tribological properties of graphene oxide/nano-MoS2 hybrid as multidimensional assembly used in the polyimide nanocomposites. RSC Avd 7:6323–6335

    CAS  Google Scholar 

  44. El Achaby M, Qaiss A (2013) Processing and properties of polyethyelene reinforced by graphene nanosheets and carbon nanotubes. Mater Des 44:81–89

    Article  Google Scholar 

  45. Hou J, Li G, Yang N, Qin L, Grami ME, Zhang Q, Wang N, Qu X (2014) Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv 4:44282–44290

    Article  CAS  Google Scholar 

  46. Ahmadi M, Zabihi O, Yadav R, Ferdowsi MRG, Naebe M (2021) The reinforcing role of 2D graphene analogue MoS2 nanosheets in multiscale carbon fibre composites: improvement of interfacial adhesion. Compos Sci Technol 207:108717

    Article  CAS  Google Scholar 

  47. Zhou K, Gao R, Gui Z, Hu Y (2017) The effective reinforcements of functionalized MoS2 nanosheets in polymer hybrid composites by soil-gel technique. Compos Part A-Appl Sci Manuf 94:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. NRF-2018R1A5A1025137 and No. NRF-2019R1A2C3003890).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Eun Lee or Keun-Byoung Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HX., Park, JY., Lee, DE. et al. Fabrication of PA6/MoS2 nanocomposites via melt blending of PA6 with PA6/PEG modified-MoS2 masterbatch. Polym. Bull. 79, 10639–10652 (2022). https://doi.org/10.1007/s00289-021-04068-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04068-z

Keywords

Navigation