Skip to main content

Advertisement

Log in

A review on the physicochemical properties and utilization of date seeds in value-added engineering products

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Date palm (Phoenix dactylifera) is an agricultural crop, which plays an important role as a source of nutrition in the day-to-day life of people. Date palm cultivation, processing industries, and consumption generate tons of wastes. One of these wastes is date seed, which represents 10% of the total weight of date fruit. The utilization of date seed waste is a research topic of interest for many applications such as cosmetic, nutritional, and engineering. In this review, the different methods used for preparing date seeds' powder and extracting its oil are surveyed. A comprehensive review of the physical and chemical properties of the date seed powder and oil is provided in addition to the employed characterization methods. This paper also reviews the utilization of date seed waste in the most common engineering applications including biofuels, composites, and adsorbent applications. The paper also highlights the research limitation and future research potentials of the utilization of date seed for several engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced from [3]

Fig. 2

Similar content being viewed by others

References

  1. Lunde P (1978) A history of dates Saudi Aramco World. Aramco 29:176–179

    Google Scholar 

  2. Radwan E S (2017) The current status of the date palm tree (Phoenix dactylifera L.) and its uses in the Gaza strip, Palestine. The Current Status of the Date Palm Tree (Phoenix dactylifera L.) and its Uses in the Gaza Strip, Palestine.

  3. FAOSTAT (2017) Crop Production 2017, Statistics Division. Food and Agriculture Organization of the United Nations.

  4. Johnson DV (2017) Enhancement of date palm as a source of multiple products: examples from other industrialized palms. Emirates J Food Agri 24:408–417

    Google Scholar 

  5. Eltaher, AA (1999) Natural Geography, Saudi Arabia. 1 ed. 1999: Riyadh.

  6. Chandrasekaran M, Bahkali AH (2013) Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology–Review. Saudi J Biol Sci 20(2):105–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barreveld WH (1993) Dates palm products. FAO agricultural services, bulletin No.101.

  8. Mohammad S et al (2021) Commercial techniques for preserving date palm (Phoenix dactylifera) fruit quality and safety: A review. Saudi Journal of Biological Sciences 28(8):4408–4420

    Article  Google Scholar 

  9. Alhijazi M et al (2020) Recent developments in palm fibers composites: a review. J Polym Environ 28(12):3029–3054

    Article  CAS  Google Scholar 

  10. Hussain MI, Farooq M, Syed QA (2020) Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.) – a review. Food Biosci 34:100509

    Article  CAS  Google Scholar 

  11. Alahyane A et al (2021) Evaluation of some nutritional quality criteria of seventeen Moroccan dates varieties and clones, fruits of date palm (Phoenix dactylifera L.). Brazilian J Biol Revista brasleira de biologia. https://doi.org/10.1590/1519-6984.236471

    Article  Google Scholar 

  12. Mathijsen D (2021) The challenging path to add a promising new bio-fiber from an overlooked source to our reinforcement toolbox: Date palm fibers. Reinf Plast 65(1):48–52

    Article  Google Scholar 

  13. Rambabu K et al (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazardous Mater 402:123560

    Article  CAS  Google Scholar 

  14. Awad S et al (2021) A critical review on date palm tree (Phoenix dactylifera L) fibres and their uses in bio-composites. Waste Biomass Valorization 12(6):2853–2887

    Article  CAS  Google Scholar 

  15. Nouri M (2021) Potentials and challenges of date pits as alternative environmental clean-up ingredients. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01215-w

    Article  Google Scholar 

  16. Ibrahim ABO (2015) Dates nuclei (seed) composition and uses, in almarsa-news.

  17. Besbes S et al (2004) Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem 84(4):577–584

    Article  CAS  Google Scholar 

  18. Mittal VU, Chaudhry AU, Nadejda M (2014) ”True” biocomposites with biopolyesters and date seed powder: mechanical, thermal, and degradation properties. J Appl Polym Sci. https://doi.org/10.1002/app.40816

    Article  Google Scholar 

  19. Mittal V et al (2015) Bio-polyester–date seed powder composites: Morphology and component migration. Polym Eng Sci 55(4):877–888

    Article  CAS  Google Scholar 

  20. Elkhouly HI, Abdel-Magied RK, Aly MF (2019) Date palm seed as suitable filler material in glass–epoxy composites. Iran Polym J 28(1):65–73

    Article  CAS  Google Scholar 

  21. Hussein A, Alhadrami G, Khalil Y (1998) The use of dates and date pits in broiler starter and finisher diets. Biores Technol 66(3):219–223

    Article  CAS  Google Scholar 

  22. Al-Mosawi AI (2018) Date waste as environmentally friendly composites. J Mater Metallur Eng 8(1):25–30

    Google Scholar 

  23. Al-Mosawi AI, Abdulsada SA, Hashim AA (2018) Sustainable procedure for using waste of date seeds as a reinforcement material for polymeric composites. Open Access Lib J 5:e4384

    Google Scholar 

  24. Kolawole S et al. (2013) Physico-mechanical properties of dates palm (Phoenix dactylifera) pits reinforced unsaturated polyester composites. ed: International Journal of Science and Research (IJSR). 4.

  25. Danladi A, Queen O, Baba MA (2014) Preparation and properties of date seed/natural rubber composites. Int J Emer Technol Adv Eng 4(9):152–156

    Google Scholar 

  26. Devshony S eteshola A, Shani A (1992) Characterisation and some potential application of date palm (Phoenix dactylifera L.) seeds and seeds oil. JAOCS 69:595–597

    Article  CAS  Google Scholar 

  27. Besbes S et al (2004) Quality characteristics and oxidative stability of date seed oil during storage. Food Sci Technol Int 10(5):333–338

    Article  CAS  Google Scholar 

  28. Besbes S et al (2004) Heating effects on some quality characteristics of date seed oil. Food Chem 91:469–476

    Article  Google Scholar 

  29. Saafi EB et al (2008) Common date palm in Tunisia: chemical composition of pulp and pits. Int J Food Sci Technol 43(11):2033–2037

    Article  CAS  Google Scholar 

  30. Ghazanfari A et al (2008) Thermal and mechanical properties of blends and composites from HDPE and date pits particles. J Compos Mater 42(1):77–89

    Article  CAS  Google Scholar 

  31. Boukouada M (2009) Phytochemical study of date seeds lipids of three fruits (Phoenix dactylifera L.) produced in Ouargla region.

  32. Fatma BA et al (2009) Sperm quality improvement after date seed oil in vitro supplementation in spontaneous and induced oxidative stress. Asian J Androl 11(3):393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alsewailem FD (2010) Binkhder, Yazeed A, Preparation and characterization of polymer/date pits composites. J Reinf Plast Compos 29(11):1743–1749

    Article  CAS  Google Scholar 

  34. Al-Ghouti MA et al (2010) Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J Hazard Mater 176(1–3):510–520

    Article  CAS  PubMed  Google Scholar 

  35. El-Naas MH, Al-Zuhair S, Alhaija MA (2010) Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chem Eng J 162(3):997–1005

    Article  CAS  Google Scholar 

  36. Hamma A, Kaci M, Pegoretti A (2013) Polypropylene/date stone flour composites: Effects of filler contents and EBAGMA compatibilizer on morphology, thermal, and mechanical properties. J Appl Polym Sci 128(6):4314–4321

    Article  CAS  Google Scholar 

  37. Amani MA et al (2013) Biodiesel production from Phoenix dactylifera as a new feedstock. Ind Crops Prod 43:40–43

    Article  CAS  Google Scholar 

  38. Habib HM et al (2013) Carotenoids, fat soluble vitamins and fatty acid profiles of 18 varieties of date seed oil. Ind Crops Prod 42:567–572

    Article  CAS  Google Scholar 

  39. Alsewailem FD, Binkhder YA (2014) Effect of coupling agent on the properties of polymer/date pits composites. J Comp 2014:1–7

    Google Scholar 

  40. Ibrahem R (2015) Effect of date palm seeds on the tribological behaviour of polyester composites under different testing conditions. J Mater Sci Eng. https://doi.org/10.4172/2169-0022.1000206

    Article  Google Scholar 

  41. Ameh AO, Isa MT, Sanusi I (2015) Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites. Leonardo Electronic J Pract Technol 26:65–78

    Google Scholar 

  42. Al Haddabi M et al (2016) Boron removal from seawater using date palm (Phoenix dactylifera) seed ash. Desalination Water Treat 57(11):5130–5137

    Article  CAS  Google Scholar 

  43. Adewunmi AA, Ismail S, Sultan AS (2015) Laboratory scale study on rheological behavior, morphological and structural properties of crosslinked polyacrylamide composite hydrogels embedded with date seed powder. J Appl Polym Sci. https://doi.org/10.1002/app.42110

    Article  Google Scholar 

  44. Bouallegue K et al (2015) Phenomenological modeling and intensification of texturing/grinding-assisted solvent oil extraction: Case of date seeds (Phoenix dactylifera L.). Arab J Chem 12:2398–2410

    Article  Google Scholar 

  45. Disher I, Ali M, Alhattab T (2015) Extraction of date palm seed oil (Phoenix Dactylifera) by Soxhlet Apparatus. Int J Adv Eng Technol 8:261–271

    Google Scholar 

  46. Al-Muhtaseb AH, Jamil F, Al-Haj L, Al-Hinai MA, Baawain M, Myint MTZ, Rooney D (2016) Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions. Energy Convers Manage 127:226–232

    Article  CAS  Google Scholar 

  47. Jamil F et al (2016) Optimization of oil extraction from waste “Date pits” for biodiesel production. Energy Convers Manage 117:264–272

    Article  CAS  Google Scholar 

  48. Azeem MW et al (2016) Production of biodiesel from low priced, renewable and abundant date seed oil. Renew Ener 86:124–132

    Article  CAS  Google Scholar 

  49. Sabzevari A, Kabiri K (2016) Converting date seed biomass into highly absorbing hydrogel. Iran Polym J 25(7):597–606

    Article  CAS  Google Scholar 

  50. El Messaoudi N et al (2016) Evaluation of performance of chemically treated date stones: Application for the removal of cationic dyes from aqueous solutions. J Taiwan Inst Chem Eng 67:244–253

    Article  Google Scholar 

  51. Al-Saidi HM (2016) The fast recovery of gold(III) ions from aqueous solutions using raw date pits: Kinetic, thermodynamic and equilibrium studies. J Saudi Chem Soc 20(6):615–624

    Article  CAS  Google Scholar 

  52. Al-Zuhair S et al (2017) Biodiesel production from oils extracted from date pits. Green Sustain Chem 7:48–56

    Article  CAS  Google Scholar 

  53. Marzouk W et al (2017) Composite materials based on low-density polyethylene loaded with date pits: Mechanical and thermal characterizations. J Thermoplast Compos Mater 30(9):1200–1216

    Article  CAS  Google Scholar 

  54. Fadhil AB, Alhayali MA, Saeed LI (2017) Date (Phoenix dactylifera L.) palm stones as a potential new feedstock for liquid bio-fuels production. Fuel 210:165–176

    Article  CAS  Google Scholar 

  55. Yousuf R, Winterburn J (2017) Waste date seed oil extract as an alternative feedstock for Poly (3-hydroxybutyrate) synthesis. Biochem Eng J 127:68–76

    Article  CAS  Google Scholar 

  56. Al-Ghouti MA et al (2017) Mechanistic insights into the remediation of bromide ions from desalinated water using roasted date pits. Chem Eng J 308:463–475

    Article  CAS  Google Scholar 

  57. Ben-Youssef S et al (2017) Green extraction procedures of lipids from Tunisian date palm seeds. Ind Crops Prod 108:520–525

    Article  CAS  Google Scholar 

  58. Qadir A et al (2018) Chemical composition of Saudi Arabian Sukkari variety of Date seed oil and extracts obtained by slow pyrolysis. Indian J Pharm Sci 80(5):940

    Article  CAS  Google Scholar 

  59. Elnajjar E et al (2018) Optimizing the extraction of oils from date seeds for biodiesel production. Int J Environ Res 12(1):101–108

    Article  CAS  Google Scholar 

  60. Abdulkareem S et al (2018) Effect of date seed particulates on mechanical properties of aluminium alloy. Acta Technica Corviniensis-Bullet Eng 11(2):89–94

    CAS  Google Scholar 

  61. Mohamed A et al (2018) Specific mechanical energy and thermal degradation of poly (lactic acid) and poly (caprolactone)/date pits composites. Int J Polym Sci 2018:1–10

    Google Scholar 

  62. Giwa SO et al (2018) Adsorption of atrazine from aqueous solution using desert date seed shell activated carbon. Adsorption 1(3):317–325

    Google Scholar 

  63. Saryono S et al (2018) Decreasing carbon tetrachloride toxicity using date-seed (Phoenix dactylifera L.) steeping in rats. Toxicol Environ Health Sci 10(2):139–145

    Article  Google Scholar 

  64. Golshan Tafti A, Solaimani Dahdivan N, Yasini Ardakani S (2017) Physicochemical properties and applications of date seed and its oil. Int Food Res J. 24(4).

  65. Nehdi I et al (2010) Characteristics and chemical composition of date palm (Phoenix canariensis) seeds and seed oil. Ind Crops Prod 32(3):360–365

    Article  CAS  Google Scholar 

  66. Afiq MA et al (2013) Date seed and date seed oil. Int Food Res J 20(5):2035

    Google Scholar 

  67. Abdalla RSM et al (2012) Physico-chemical characteristics of date seed oil grown in Sudan. Am J Appl Sci 9(7):993

    Article  CAS  Google Scholar 

  68. Mahmood K et al (2015) Date pits (Phoenix dactylifera (L)) waste to best. Agro Food Industry Hi Tech 26:3

    Google Scholar 

  69. Ala’a, H. et al (2018) Biodiesel production over a catalyst prepared from biomass-derived waste date pits. Biotechnol Rep 20:00284

    Google Scholar 

  70. Al Asfar J et al (2018) Combustion characteristics of solid waste biomass, oil shale, and coal. Ener Sources Part A: Recov Utilization Environ Effects 40:335–342

    Article  CAS  Google Scholar 

  71. Yahya SA et al (2021) Techno-economic analysis of fast pyrolysis of date palm waste for adoption in Saudi Arabia. Energies 14(19):6048

    Article  Google Scholar 

  72. Aldayel FM, Alsobeg MS, Khalifa A (2021) In vitro antibacterial activities of silver nanoparticles synthesised using the seed extracts of three varieties of Phoenix dactylifera. Braz J Biol 82:e242301

    Article  CAS  PubMed  Google Scholar 

  73. Charti I et al (2021) Ecofriendly synthesis of stabilized silver nanoparticles and the evaluation of their potential applications. Curr Res Green Sustain Chem 4:100102

    Article  CAS  Google Scholar 

  74. Basheer AO et al (2021) Synthesis and optimization of high surface area mesoporous date palm fiber-based nanostructured powder activated carbon for aluminum removal. Chin J Chem Eng 32:472–484

    Article  CAS  Google Scholar 

  75. Tungare K et al (2020) Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera. Biotech 10(12):540

    Google Scholar 

  76. Ahmad M et al (2020) Turning date palm waste into carbon nanodots and nano zerovalent iron composites for excellent removal of methylthioninium chloride from water. Sci Rep 10(1):16125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alothman OY et al. (2021) Structural, morphological and thermal properties of nano filler produced from date palm-based micro fibers (Phoenix dactylifera L.). J Polym Environ.

  78. Beroual M et al (2021) Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valor 12(5):2779–2793

    Article  CAS  Google Scholar 

  79. Hachaichi A et al (2021) Nanocrystalline cellulose from microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: isolation and characterization. Materials 14(18):5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hachaichi A et al (2021) Extraction and characterization of microcrystalline cellulose from date palm fibers using successive chemical treatments. J Polym Environ 29(6):1990–1999

    Article  CAS  Google Scholar 

  81. Shaikh HM et al (2021) Isolation and characterization of alpha and nanocrystalline cellulose from date palm (Phoenix dactylifera L.) trunk mesh. Polymers 13(11):1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajeswari VD et al (2021) Green and ecofriendly synthesis of cobalt oxide nanoparticles using Phoenix dactylifera L: antimicrobial and photocatalytic activity. Appl Nanosci. https://doi.org/10.1007/s13204-021-02038-5

    Article  Google Scholar 

  83. Hobani A (2000) Effective thermal properties of dates. Res Bullet. 92.

  84. Rahman M et al (2007) Composition characterisation and thermal transition of date pits powders. J Food Eng 80(1):1–10

    Article  CAS  Google Scholar 

  85. Suresh S et al (2013) Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J Food Eng 119:668–679

    Article  CAS  Google Scholar 

  86. Guizani N, Suresh S, Rahman MS (2014) Polyphenol contents and thermal characteristics of freeze-dried date-pits powder. in International Conference of Agricultural Engineering, Zurich

  87. Babiker ME et al (2013) Pyrolysis characteristics of Phoenix dactylifera date palm seeds using thermo-gravimetric analysis (TGA). Int J Environ Sci Develop 4(5):521

    Article  Google Scholar 

  88. Nasser R et al (2016) Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies 9(5):374

    Article  Google Scholar 

  89. Arbi Nehdi I et al (2018) Chemical composition of date palm ( Phoenix dactylifera L) seed oil from six Saudi Arabian cultivars: seed oil from Saudi Arabian cultivars. J Food Sci 83:624–630

    Article  Google Scholar 

  90. Metoui M et al (2018) Chemical composition, antioxidant and antibacterial activity of tunisian date palm seed. Polish J Environ Stud 28:267–274

    Article  Google Scholar 

  91. Sawaya WN, Khalil JK, Safi WJ (1984) Chemical composition and nutritional quality of date seeds. J Food Sci 49(2):617–619

    Article  CAS  Google Scholar 

  92. Tafti A, Panahi B (2019) Chemical composition of seed and seed oil from Iranian commercial date cultivars. Biotechnol Bioprocess Eng 3:1–8

    Google Scholar 

  93. Elnajjar E et al (2020) Morphology characterization and chemical composition of United Arab Emirates date seeds and their potential for energy production. Energy. https://doi.org/10.1016/j.energy.2020.118810

    Article  Google Scholar 

  94. Mrabet A et al (2020) Date seeds: a promising source of oil with functional properties. Foods 9:787

    Article  CAS  PubMed Central  Google Scholar 

  95. Belgacem C et al (2021) Valorization of date palm waste for plastic reinforcement: macro and micromechanics of flexural strength. Polymers 13(11):1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamada JS, Hashim IB, Sharif FA (2002) Preliminary analysis and potential uses of date pits in foods. Food Chem 76:135–137

    Article  CAS  Google Scholar 

  97. Ahmad T et al (2011) The use of date palm as a potential adsorbent for wastewater treatment: A review. Environ Sci Pollut Res Int 19:1464–1484

    Article  PubMed  Google Scholar 

  98. Al-Farsi MA, Lee CY (2008) Nutritional and functional properties of dates: a review. Critic Rev Food Sci Nut 48(10):877–887

    Article  CAS  Google Scholar 

  99. Muthusamy C, Bahkali A (2013) Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology—review. Saudi J Biol Sci 20:105–120

    Article  Google Scholar 

  100. Saryono S (2019) Date Seeds Drinking as Antidiabetic: A Systematic Review. in IOP Conference Series: Earth and Environmental Science. 2019. IOP Publishing.

  101. Sirisena S, Ng K, Ajlouni S (2015) The emerging Australian date palm industry: date fruit nutritional and bioactive compounds and valuable processing by-products. Compre Rev Food Sci Food Safe 14(6):813–823

    Article  Google Scholar 

  102. Hossain MZ et al (2014) Chemical composition of date-pits and its potential for developing value-added product-a review. Polish J Food Nut Sci 64(4):215–226

    Article  CAS  Google Scholar 

  103. Meher LC, Dharmagadda VSS, Naik SN (2006) Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Biores Technol 97(12):1392–1397

    Article  CAS  Google Scholar 

  104. Nalgundwar A, Paul B, Sharma SK (2016) Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel 173:172–179

    Article  CAS  Google Scholar 

  105. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrol 72(2):243–248

    Article  CAS  Google Scholar 

  106. Caputo AC et al (2005) Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenerg 28(1):35–51

    Article  Google Scholar 

  107. Al Asfar J, Hammad A (2017) Simulation of date seed combustion in a fluidized bed burner. 11:124-127.

  108. Islam M, Hoque SMN, Joardder UH (2009) Fixed bed pyrolysis of date seed waste for liquid oil production.

  109. Joardder UH (2012) The utilization of waste date seed as bio-oil and activated carbon by pyrolysis process. Adv Mech Eng. https://doi.org/10.1155/2012/316806

    Article  Google Scholar 

  110. Sait HH et al (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Biores Technol 118:382–389

    Article  CAS  Google Scholar 

  111. Babiker M et al (2014) The pyrolysis behavior of evolved species from date palm seeds. MATEC Web Conf 13:06008

    Article  Google Scholar 

  112. Hussain A (2014) Pyrolysis of Saudi Arabian date palm waste: a viable option for converting waste into wealth. Life Sci J 11:667–671

    Google Scholar 

  113. de la Cruz-Lovera C et al (2019) Date seeds (Phoenix dactylifera L) valorization for boilers in the mediterranean climate. Sustainability 11:711

    Article  Google Scholar 

  114. Sánchez F, San Miguel G (2016) Improved fuel properties of whole table olive stones via pyrolytic processing. Biomass Bioener 92:1–11

    Article  Google Scholar 

  115. Bartocci P et al (2015) Pyrolysis of olive stone for energy purposes. Energy Procedia 82:374–380

    Article  CAS  Google Scholar 

  116. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Article  CAS  Google Scholar 

  117. Chongkhong S, Kanjaikaew U, Tongurai C (2012) A Review of FFA Esterification for Biodiesel Production.

  118. Huang D, Zhou H, Lin L (2012) Biodiesel: an alternative to conventional fuel. Energy Procedia 16:1874–1885

    Article  Google Scholar 

  119. Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sustain Energy Rev 16(7):4763–4784

    Article  CAS  Google Scholar 

  120. Aransiola EF et al (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenerg 61:276–297

    Article  CAS  Google Scholar 

  121. Materials ASfTa (2007) ASTM D6751-biodiesel blend stock specification (B100)

  122. EN (2003) The EN 14214 standard-specifications and test methods

  123. Mudge S, Pereira M (1999) Stimulating the biodegradation of crude oil with biodiesel preliminary results. Spill Sci Technol Bullet 5:353–355

    Article  CAS  Google Scholar 

  124. Gupta RB, Demirbas A (2010) Gasoline, diesel, and ethanol biofuels from grasses and plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  125. Demirbas A (2007) Biodiesel: a realistic fuel alternative for diesel engines. Springer, London

    Google Scholar 

  126. Ali Y, Hanna MA, Cuppett SL (1995) Fuel properties of tallow and soybean oil esters. J Am Oil Chem Soc 72(12):1557–1564

    Article  CAS  Google Scholar 

  127. Abu-Jrai AM et al (2017) Valorization of waste Date pits biomass for biodiesel production in presence of green carbon catalyst. Energy Convers Manage 135:236–243

    Article  CAS  Google Scholar 

  128. Farooq M et al (2018) Biodiesel production from date seed oil (Phoenix dactylifera L.) via egg shell derived heterogeneous catalyst. Chem Eng Res Design 132:644–651

    Article  CAS  Google Scholar 

  129. Hellier P et al (2019) Combustion and emissions characteristics of date pit methyl ester in a single cylinder direct injection diesel engine. Fuel 243:162–171

    Article  CAS  Google Scholar 

  130. Inglezakis VJ, Poulopoulos SG (2006) 2 - Adsorption, Ion Exchange, and Catalysis. In: Inglezakis VJ, Poulopoulos SG (eds) Adsorption, Ion Exchange and Catalysis. Elsevier, Amsterdam, pp 31–56

    Chapter  Google Scholar 

  131. Aktaş FÇaÖ (2011) Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim

  132. Bouchelta C et al (2012) Effects of pyrolysis conditions on the porous structure development of date pits activated carbon. J Anal Appl Pyrol 94:215–222

    Article  CAS  Google Scholar 

  133. Banat F, Al-Asheh S, Al-Makhadmeh L (2003) Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem 39(2):193–202

    Article  CAS  Google Scholar 

  134. Valsamma Daniel V, Gulyani BB, Kumar BG (2012) Usage of date stones as adsorbents: a review. J Disper Sci Tech. 33:1321–1331

    Article  Google Scholar 

  135. Ahmed MJ (2016) Preparation of activated carbons from date (Phoenix dactylifera L) palm stones and application for wastewater treatments: Review. Process Safe Environ Protection 102:168–182

    Article  CAS  Google Scholar 

  136. Tadda MA et al. (2016) A review on activated carbon: process, application and prospects. 2:7–13.

  137. Din ATM, Hameed B, Ahmad AL (2009) Batch adsorption of phenol onto physiochemical-activated coconut shell. J Hazard Mater 161(2–3):1522–1529

    CAS  Google Scholar 

  138. Mahmoodi NM, Hayati B, Arami M (2010) Textile dye removal from single and ternary systems using date stones: kinetic, isotherm, and thermodynamic studies. J Chem Eng Data 55:4638–4649

    Article  CAS  Google Scholar 

  139. Banat F, Al-Asheh S, Al-Rousan D (2002) A comparative study of copper and zinc ion adsorption on to activated and non-activated date-pits. Adsorp Sci Technol 20:319–335

    Article  CAS  Google Scholar 

  140. Hassan SS, Al-Ghouti MA, Abu-Dieyeh M, McKay G (2019) Novel bioadsorbents based on date pits for organophosphorus pesticide remediation from water. J Environ Chem Eng 8(1):103593

  141. El Bakouri H et al (2009) Drin pesticides removal from aqueous solutions using acid-treated date stones. Biores Technol 100(10):2676–2684

    Article  Google Scholar 

  142. Awwad NS et al (2013) Removal of heavy metal ions from ground and surface water samples using carbons derived from date pits. J Environ Chem Eng 1(3):416–423

    Article  CAS  Google Scholar 

  143. Alhamed YA, Bamufleh HS (2009) Sulfur removal from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl2. Fuel 88(1):87–94

    Article  CAS  Google Scholar 

  144. Al-Ghouti MA et al (2010) Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J Hazard Mater 176(1):510–520

    Article  CAS  PubMed  Google Scholar 

  145. Al-Ghouti MA, Hawari A, Khraisheh M (2013) A solid-phase extractant based on microemulsion modified date pits for toxic pollutants. J Environ Manage 130:80–89

    Article  CAS  PubMed  Google Scholar 

  146. Haimour NM, Emeish S (2006) Utilization of date stones for production of activated carbon using phosphoric acid. Waste Manage 26(6):651–660

    Article  CAS  Google Scholar 

  147. Al-Qaessi FAH (2010) Production of activated carbon from date stones by using zinc chloride. Energy Sour Part A: Recov Utilization Environ Effects 32(10):917–930

    Article  CAS  Google Scholar 

  148. Girgis BS, El-Hendawy A-NA (2002) Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater 52(2):105–117

    Article  CAS  Google Scholar 

  149. Toles CA, Marshall WE, Johns MM (1997) Granular activated carbons from nutshells for the uptake of metals and organic compounds. Carbon 35(9):1407–1414

    Article  CAS  Google Scholar 

  150. Jagtoyen M, Derbyshire F (1998) Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36(7):1085–1097

    Article  CAS  Google Scholar 

  151. Laine J, Calafat A (1991) Factors affecting the preparation of activated carbons from coconut shell catalized by potassium. Carbon 29(7):949–953

    Article  CAS  Google Scholar 

  152. Laine J, Yunes S (1992) Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon 30(4):601–604

    Article  CAS  Google Scholar 

  153. Shahad HA, Farhan AM, Saleh HA (1998) Using date stone charcoal as a filtering medium for automobile exhaust gases. Energy Convers Manage 39(12):1215–1222

    Article  CAS  Google Scholar 

  154. Al Zarooni M et al (2002) Adsorption of phenolic compounds and methylene blue onto activated carbon prepared from date fruit pits. Eng Life Sci 2:161–165

    Article  Google Scholar 

  155. Banat F, Al-Asheh S, Al-Makhadmeh L (2004) Utilization of raw and activated date pits for the removal of phenol from aqueous solution. Chem Eng Technol 27:80–86

    Article  CAS  Google Scholar 

  156. Al Zarooni M, Abu Al-Rub F (2004) Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits. Adsorp Sci Technol 22:119–134

    Article  Google Scholar 

  157. El-Sharkawy EA, Soliman AY, Al-Amer KM (2007) Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation. J Colloid Interface Sci 310(2):498–508

    Article  CAS  PubMed  Google Scholar 

  158. Al-Muhtaseb SA, El-Naas MH, Abdallah S (2008) Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons. J Hazard Mater 158(2):300–307

    Article  CAS  PubMed  Google Scholar 

  159. Merzougui Z, Addoun F (2008) Effect of oxidant treatment of date pit activated carbons application to the treatment of waters. Desalination 222(1):394–403

    Article  CAS  Google Scholar 

  160. El Nemr A et al (2008) Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. J Hazard Mater 152(1):263–275

    Article  PubMed  Google Scholar 

  161. El-Hendawy A-NA (2009) The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass. J Hazard Mater 167(1):260–267

    Article  CAS  PubMed  Google Scholar 

  162. El-Naas MH, Manal Abu Alhaija SAZ (2010) Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J Hazardous Mater 173(1–3):750–757

  163. Mouni L et al (2010) Removal of Pb2+ and Zn2+ from the aqueous solutions by activated carbon prepared from Dates stone. Desalin Water Treat 16(1–3):66–73

    Article  CAS  Google Scholar 

  164. Danish M et al (2011) Sorption of copper(II) and nickel(II) ions from aqueous solutions using calcium oxide activated date (Phoenix dactylifera) stone carbon: equilibrium, kinetic, and thermodynamic studies. J Chem Eng Data 56:3607–3619

    Article  CAS  Google Scholar 

  165. Reddy KSK, Al Shoaibi A, Srinivasakannan C (2012) Activated carbon from date palm seed: process optimization using response surface methodology. Waste Biomass Valor 3(2):149–156

    Article  CAS  Google Scholar 

  166. Belhachemi M et al (2014) Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: effect of porosity and surface chemistry. Chem Eng J 253:121–129

    Article  CAS  Google Scholar 

  167. Al-Zuhair S et al (2015) Performance evaluation of LPG desulfurization by adsorption for hydrogen production. J Energy Chem 24(4):477–484

    Article  Google Scholar 

  168. Ogungbenro AE et al (2018) Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. J Environ Chem Eng 6(4):4245–4252

    Article  CAS  Google Scholar 

  169. Krishnamoorthy R et al (2019) Date pits activated carbon for divalent lead ions removal. J Biosci Bioeng 128(1):88–97

    Article  CAS  PubMed  Google Scholar 

  170. Mangwandi C, Kurniawan TA, Albadarin AB (2020) Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms and influence of co-existing ions. Chem Eng Res Des 156:251–262

    Article  CAS  Google Scholar 

  171. Bahamon D et al (2020) Performance of activated carbons derived from date seeds in CO2 swing adsorption determined by combining experimental and molecular simulation data. Ind Eng Chem Res 59:7161–7173

    Article  CAS  Google Scholar 

  172. Fahim A, Alsulaili A (2020) Oil removal from produced water by agriculture waste adsorbents. Int J Environ Waste Manage 25:12

    Article  Google Scholar 

  173. Vajihe Hasanzadeh OR, Heidari M (2020) Cefixime adsorption onto activated carbon prepared by dry thermochemical activation of date fruit residues. Microchem J 152:104261

    Article  Google Scholar 

  174. Vohra M (2020) Treatment of gaseous ammonia emissions using date palm pits based granular activated carbon. Int J Environ Res Public Health 17(5):1519

    Article  CAS  PubMed Central  Google Scholar 

  175. Shweta M, Tirthankar M, Prasad K (2020) Prediction of methyl orange removal by iron decorated activated carbon using an artificial neural network. Environ Technol. 0(0): 1–16.

  176. Ben Salem I et al (2021) Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes. J Environ Manage 299:113644

    Article  CAS  PubMed  Google Scholar 

  177. Sizirici B et al (2021) The effect of pyrolysis temperature and feedstock on date palm waste derived biochar to remove single and multi-metals in aqueous solutions. Sustain Environ Res 31(1):9

    Article  CAS  Google Scholar 

  178. Haghbin MR, Niknam Shahrak M (2021) Process conditions optimization for the fabrication of highly porous activated carbon from date palm bark wastes for removing pollutants from water. Powder Technol 377:890–899

    Article  CAS  Google Scholar 

  179. Rambabu K et al (2021) Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide. Chemosphere 282:131103

    Article  CAS  PubMed  Google Scholar 

  180. Benyoucef S et al (2020) Preparation and characterization of novel microstructure cellulosic sawdust material: application as potential adsorbent for wastewater treatment. Cellulose 27:8169–8180

    Article  CAS  Google Scholar 

  181. Arunesh Kumar SS, Halliburton (2011) Lost Circulation Control and Wellbore Strengthening: Looking Beyond Particle Size Distribution. In: Engineers AAoD (ed) AADE National Technical Conference and Exhibition, Houston, Texas,. p. AADE-11-NTCE-21.

  182. Hermoso J, Martinez-Boza F, Gallegos C (2015) Influence of aqueous phase volume fraction, organoclay concentration and pressure on invert-emulsion oil muds rheology. J Ind Eng Chem 22:341–349

    Article  CAS  Google Scholar 

  183. Orji I, Ibezim-Ezeani M, Akaranta O (2018) Synthesis of ester base fluids for drilling mud formulation using different catalysts I. Int J ChemTech Res 11:373–382

    Article  CAS  Google Scholar 

  184. Elkatatny S, Nasr-El-Din H (2012) Properties of Filter Cake of Water-Based Drilling Fluid under Dynamic Conditions Using Computer Tomography. SPE/IADC Drilling Conference, Proceedings. 2.

  185. Hermoso J, Martinez-Boza F, Gallegos C (2014) Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure. Appl Clay Sci 87:14–21

    Article  CAS  Google Scholar 

  186. Al-Hameedi ATT et al. (2020) Conventional and Eco-Friendly Hydraulic Fracturing Fluid Additives: A Review. in SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers.

  187. Adewole JK, Najimu MO (2017) A study on the effects of date pit-based additive on the performance of water-based drilling fluid. J Energy Res Technol. https://doi.org/10.1115/1.4038382

    Article  Google Scholar 

  188. Wajheeuddin M (2014) An experimental study on particle sizing of natural substitutes for drilling fluid applications. J Nat Sci Sustain Technol.

  189. Wajheeuddin M (2014) Development of an Environmentally-Friendly Drilling Fluid using Date Seeds and Grass, in Petroleum Engineering. 2014, KFUPM: KSA. p. 138.

  190. Amanullah M (2016) Characteristics, behavior and performance of ARC Plug-A date seed-based sized particulate LCM. in SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers.

  191. Amanullah M et al (2016) Application of an indigenous eco-friendly raw material as fluid loss additive. J Petrol Sci Eng 139:191–197

    Article  CAS  Google Scholar 

  192. Md Amanullah DS et al (2016) Date seed powder as a fluid loss additive for drilling fluids. Saudi Arabian Oil Company, Dhahran

  193. Alawad M, Elshreef K (2017) Superior fracture-seal material using crushed date palm seeds for oil and gas well drilling operations. J King Saud Univ Eng Sci. 31:97–103

    Google Scholar 

  194. AlAwad MN, Fattah K, AlGobany AA (2018) Innovative Wellbore Strengthening Using Crushed Date Palm Seeds and Shredded Waste Car Tyres. in: ISRM International Symposium-10th Asian Rock Mechanics Symposium. International Society for Rock Mechanics and Rock Engineering.

  195. Lummus JL, Ryals JN (1971) Preventing loss of drilling fluid to drilled formations. Google Patents.

  196. Green PC (1984) Use of ground, sized cocoa bean shells as a lost circulation material in drilling mud. Google Patents.

  197. Burts Jr BD (1992) Lost circulation material with rice fraction. Google Patents.

  198. Burts Jr, BD (1994) Lost circulation material with corn cob outers. Google Patents.

  199. Ghassemzadeh J (2011) Lost circulation material for oilfield use. Google Patents.

  200. Zweben C (2015) Composite Materials. Myer Kutz Mechanical Engineers’ Handbook. Wiley, Hoboken p, pp 1–37

    Google Scholar 

  201. Clyne T, Hull D (2019) An introduction to composite materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  202. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162

    Article  CAS  Google Scholar 

  203. Reddy TRK, Kim HJ, Park JW (2016) Renewable Biocomposite Properties and their Applications. In: Matheus Poletto (ed) Composites from renewable and sustainable materials. Intech. p. 177.

  204. Sathishkumar T et al (2013) Characterization of natural fiber and composites–a review. J Reinf Plast Compos 32(19):1457–1476

    Article  Google Scholar 

  205. Abu-Jdayil B et al (2019) Traditional, state-of-the-art and renewable thermal building insulation materials: an overview. Constr Build Mater 214:709–735

    Article  Google Scholar 

  206. Ghori W et al (2018) A review on date palm (phoenix dactylifera) fibers and its polymer composites. IOP Conference Series: Mater Sci Eng 368:012009

    Article  Google Scholar 

  207. Azwa Z et al (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  208. Roy S et al (2014) A review on bio-composites: fabrication, properties and applications. Int J Innov Res Sci Eng Technol 3(10):16814–16824

    Article  Google Scholar 

  209. Yıldızhan Ş et al (2018) Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. Eur Mech Sci 2(3):83–91

    Article  Google Scholar 

  210. Ghazanfari A, Panigrahi S, Tabil Jr L (2005) Experiments on production of bio-composite plates from pistachio shells, date pits and HDPE. In: 2005 CSAE 2005 meeting

  211. Ghazanfari A., Fung J, Panigarhi S (2006) Some Properties of Composites Made from Blends of Date Pits and High Density Polyethylene. in ASABE/CSBE North Central Intersectional Meeting. American Society of Agricultural and Biological Engineers.

  212. Agoudjil B et al (2011) Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Buildings 43(2–3):491–497

    Article  Google Scholar 

  213. Mittal V, Chaudhry A, Matsko NB (2014) “True” biocomposites with biopolyesters and date seed powder: Mechanical, thermal, and degradation properties. J Appl Polymer Sci. https://doi.org/10.1002/app.40816

    Article  Google Scholar 

  214. Moustafa H et al (2018) Biodegradable date stones filler for enhancing mechanical, dynamic, and flame retardant properties of polyamide-6 biocomposites. Polym Compos 39(6):1978–1987

    Article  CAS  Google Scholar 

  215. Basim Abu-Jclayil HIM (2013) Thermal insulation material. United Arab Emirates University, UAE

    Google Scholar 

  216. Abu-Jdayil B, Mourad A-H, Hussain A (2015) Date pits and date palm wood-based heat insulator composites

  217. Abu-Jdayil B, Hittini W, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: physical and thermal properties. Int J Polymer Sci 2019:1–10

    Article  Google Scholar 

  218. Abu-Jdayil B (2019) Chapter 3 - Unsaturated Polyester Microcomposites. In: Thomas S, Hosur M, Chirayil CJ (eds) Unsaturated Polyester Resins. Elsevier, NY, pp 67–100

    Chapter  Google Scholar 

  219. Alewo A, Isa M, Sanusi I (2015) Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites. Leonardo Electronic J Pract Technol 14:65–78

    Google Scholar 

  220. Abass S, Al-Mosawi A, Hashim AA (2018) Date waste as environmentally friendly composites. J Mater Metallur Eng 8:25–30

    Google Scholar 

  221. Alessandro R, Petr V, Miroslav M (2016) Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Compos B Eng 104:9–16

    Article  Google Scholar 

  222. Nagaprasad N et al (2020) Effect of cellulosic filler loading on mechanical and thermal properties of date palm seed/vinyl ester composites. Int J Biol Macromol 147:53–66

    Article  Google Scholar 

  223. Alami AH (2013) Experiments on unfired masonry clay bricks mixed with palm fronds and date pits for thermal insulation applications. J Renew Sustain Energy. https://doi.org/10.1063/1.4801754

    Article  Google Scholar 

  224. Alami AH (2013) Mechanical and thermal properties of solid waste-based clay composites utilized as insulating materials. Int J Ther Environ Eng 6(2):89–94

    Google Scholar 

  225. Djafri G, Chelouah N (2018) Influence of the diameter of ground date pits on the technological properties of clay bricks. Cerâmica 64(372):589–597

    Article  CAS  Google Scholar 

  226. Kolawole A, Ishiaku US (2015) Physico-mechanical properties of dates palm (Phoenix dactylifera) pits reinforced unsaturated polyester composites. Int J Sci Res (IJSR). 4(10):1412–1418

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvin P. Thomas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zahrani, K.S., Faqeeh, A.A., Abdulghani, Z.R. et al. A review on the physicochemical properties and utilization of date seeds in value-added engineering products. Polym. Bull. 79, 10433–10490 (2022). https://doi.org/10.1007/s00289-021-04048-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04048-3

Keywords

Navigation