Skip to main content
Log in

Magnetic polyindole-Ag composite for the catalytic reduction and removing of the organic pollutants

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the preparation, characterization, and application of Fe3O4-polyindole-Ag composite are reported. The Fe3O4-PIN-Ag composite with the structure that Ag nanoparticles were decorated on the surface of Fe3O4-PIN was prepared via a facile in situ method. The nanocomposite was manufactured via oxidation in situ polymerization of indole on iron oxide nanoparticles in the presence of ammonium persulfate, (NH4)2S2O8, as an oxidant. Then, the formed silver nanoparticles without using external reductant were deposited on the surface of polyindole. The structure and the component of Fe3O4-PIN-Ag composite were well identified by FT-IR, UV–Vis, XRD, SEM, EDX, ICP-AES, and TEM techniques. The composites indicated excellent catalytic activities for the reduction of 4-nitrophenol and methylene blue in the presence of NaBH4 and removal of methylene blue with just a low amount of adsorbent (1 mg). The catalyst could complete reduction of 4-nitrophenol and methylene blue in 28 and 20 min, respectively, and adsorption of methylene blue in 140 min with apparent rate constants kapp of 9.49 × 10–2, 16 × 10–2, and 1.2 × 10–2 min−1, respectively. The Fe3O4-PIN-Ag composite was able to capture the electrons/hydride ions and increased the opportunities to reduce 4-nitrophenol and methylene blue and could help to facilitate the contact of methylene blue by PIN chains and Ag nanoparticles. This catalyst exhibited superior durable catalytic stability so that no significant activity loss was observed in the consecutive six reaction runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3
Fig. 12

Similar content being viewed by others

References

  1. Zafar MN, Dar Q, Nawaz F, Zafar MN, Iqbal M, Nazar MN (2019) Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J Mater Res Technol 8(1):713–725

    Article  CAS  Google Scholar 

  2. Khan S, Ullah A, Ullah K, Rehman NU (2016) Insight into hydrogels. Des Monomers Polym 19(5):456–478

    Article  CAS  Google Scholar 

  3. Saruchi KBS, Jindal R, Kapur GS, Kumar V (2014) Synthesis, characterization and evaluation of Gum tragacanth and acrylic acid hydrogel for sustained calcium chloride release-enhancement of water holding capacity of soil. J Chin Adv Mater Soc 2(1):40–52

    Article  Google Scholar 

  4. Wu Z, Zhang D, Cai Y, Wang X, Zhang L, Chen Y (2017) Water quality assessment based on the water quality index method in Lake Poyang: the largest freshwater lake in China. Sci Rep 7(1):1–10

    Article  Google Scholar 

  5. Gupta VK (2009) Application of low-cost adsorbents for dye removal–a review. J Environ Manag 90(8):2313–2342

    Article  CAS  Google Scholar 

  6. El Qada EN, Allen SJ, Walker GM (2008) Adsorption of basic dyes from aqueous solution onto activated carbons. Chem Eng J 135(3):174–184

    Article  Google Scholar 

  7. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1–3):70–80

    Article  CAS  PubMed  Google Scholar 

  8. Das M, Yadav M, Shukla F, Ansari S, Jadeja RN, Thakore S (2020) Facile design of a dextran derived polyurethane hydrogel and metallopolymer: a sustainable approach for elimination of organic dyes and reduction of nitrophenols. New J Chem 44(44):19122–19134

    Article  CAS  Google Scholar 

  9. Narula A, Rao CP (2019) Hydrogel of the supramolecular complex of graphene oxide and sulfonatocalix [4] arene as reusable material for the degradation of organic dyes: demonstration of adsorption and degradation by spectroscopy and microscopy. ACS Omega 4(3):5731–5740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu L, Zhang B, Zhang Y, He Y, Huang L, Tan S, Cai X (2015) Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J Chem Eng Data 60(5):1270–1278

    Article  CAS  Google Scholar 

  11. Mao B, Sidhureddy B, Thiruppathi AR, Wood PC, Chen A (2020) Efficient dye removal and separation based on graphene oxide nanomaterials. New J Chem 44(11):4519–4528

    Article  CAS  Google Scholar 

  12. Du C, He S, Gao X, Chen W (2016) Hierarchical Cu@MnO2 core–shell nanowires: a nonprecious-metal catalyst with an excellent catalytic activity toward the reduction of 4-nitrophenol. ChemCatChem 8(18):2885–2889

    Article  CAS  Google Scholar 

  13. Mills A, Hazafy D, Parkinson J, Tuttle T, Hutchings MG (2011) Effect of alkali on methylene blue (C I Basic Blue 9) and other thiazine dyes. Dye Pigment 88(2):149–155

    Article  CAS  Google Scholar 

  14. Ratova M, Marcelino RBP, De Souza PP, Amorim CC, Kelly PJ (2017) Reactive magnetron sputter deposition of bismuth tungstate coatings for water treatment applications under natural sunlight. Catalysts 7(10):283

    Article  Google Scholar 

  15. Othman NH, Alias NH, Shahruddin MZ, Abu Bakar NF, Him NRN, Lau WJ (2018) Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J Environ Chem Eng 6(2):2803–2811

    Article  CAS  Google Scholar 

  16. Gupta RK, Dubey M, Li PZ, Xu Q, Pandey DS (2015) Size-controlled synthesis of Ag nanoparticles functionalized by heteroleptic dipyrrinato complexes having meso-pyridyl substituents and their catalytic applications. Inorg Chem 54(6):2500–2511

    Article  PubMed  Google Scholar 

  17. Hu H, Shao M, Zhang W, Lu L, Wang H, Wang S (2007) Synthesis of layer-deposited silicon nanowires, modification with Pd nanoparticles, and their excellent catalytic activity and stability in the reduction of methylene blue. J Phys Chem 111(8):3467–3470

    CAS  Google Scholar 

  18. Hadi P, Guo J, Barford J, McKay G (2016) Multilayer dye adsorption in activated carbons- Facile approach to exploit vacant sites and interlayer charge interaction. Environ Sci Technol 50(10):5041–5049

    Article  CAS  PubMed  Google Scholar 

  19. Akpotu SO, Moodley B (2018) MCM-48 encapsulated with reduced graphene oxide/graphene oxide and as-synthesised MCM-48 application in remediation of pharmaceuticals from aqueous system. J Mol Liq 261:540–549

    Article  CAS  Google Scholar 

  20. Rasheed T, Adeel M, Nabeel F, Bilal M, Iqbal HM (2019) TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal. Sci Total Environ 688:299–311

    Article  CAS  PubMed  Google Scholar 

  21. Guo D, Muhammad N, Lou C, Shou D, Zhu Y (2019) Synthesis of dendrimer functionalized adsorbents for rapid removal of glyphosate from aqueous solution. New J Chem 43(1):121–129

    Article  CAS  Google Scholar 

  22. Rajabi M, Mahanpoor K, Moradi O (2017) Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv 7(74):47083–47090

    Article  CAS  Google Scholar 

  23. Tang Y, Yang R, Ma D, Zhou B, Zhu L, Yang J (2018) Removal of methyl orange from aqueous solution by adsorption onto a hydrogel composite. Polym Polym Compos 26(2):161–168

    CAS  Google Scholar 

  24. Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. J Hazard Mater 181(1–3):836–844

    Article  CAS  PubMed  Google Scholar 

  25. Liu Q, Li Y, Chen H, Lu J, Yu G, Möslang M, Zhou Y (2020) Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater 382:121040

    Article  CAS  PubMed  Google Scholar 

  26. Malakootian M, Heidari MR (2018) Reactive orange 16 dye adsorption from aqueous solutions by psyllium seed powder as a low-cost biosorbent: kinetic and equilibrium studies. Appl Water Sci 8(7):1–9

    Article  Google Scholar 

  27. Chowdhury A, Kumari S, Khan AA, Hussain S (2020) Selective removal of anionic dyes with exceptionally high adsorption capacity and removal of dichromate (Cr2O72-) anion using Ni-Co-S/CTAB nanocomposites and its adsorption mechanism. J Hazard Mater 385:121602

    Article  CAS  PubMed  Google Scholar 

  28. Qi X, Wu L, Su T, Zhang J, Dong W (2018) Polysaccharide-based cationic hydrogels for dye adsorption. Colloids Surf B Biointerfaces 170:364–372

    Article  CAS  PubMed  Google Scholar 

  29. Kang H, Kim M, Park KH (2015) Effective immobilization of gold nanoparticles on core–shell thiol-functionalized GO coated TiO2 and their catalytic application in the reduction of 4-nitrophenol. Appl Catal A 502:239–245

    Article  CAS  Google Scholar 

  30. Zhang J, Chen G, Chaker M, Rosei F, Ma D (2013) Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Appl Catal B 132:107–115

    Article  Google Scholar 

  31. Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A (2015) Highly active Au–CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl Catal B 166:518–528

    Article  Google Scholar 

  32. Ji Z, Shen X, Yang J, Zhu G, Chen K (2014) A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: green synthesis and catalytic properties. Appl Catal B 144:454–461

    Article  CAS  Google Scholar 

  33. Gao S, Zhang Z, Liu K, Dong B (2016) Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl Catal B 188:245–252

    Article  CAS  Google Scholar 

  34. Ji T, Chen L, Mu L, Yuan R, Knoblauch M, Bao FS, Zhu J (2016) In situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: exceptional catalyst for nitroaromatics reduction. Appl Catal B 182:306–315

    Article  CAS  Google Scholar 

  35. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B 181:371–378

    Article  CAS  Google Scholar 

  36. El-Bahy ZM (2013) Preparation and characterization of Pt promoted NiY and CoY catalysts employed for 4-nitrophenol reduction. Appl Catal A 468:175–183

    Article  CAS  Google Scholar 

  37. Gupta N, Singh HP, Sharma RK (2011) Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J Mol Catal A 335(1–2):248–252

    Article  CAS  Google Scholar 

  38. Dong Z, Le X, Dong C, Zhang W, Li X, Ma J (2015) Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl Catal B 162:372–380

    Article  CAS  Google Scholar 

  39. Sadhanala HK, Nandan R, Nanda KK (2016) Nitrogenassisted electroless assembling of 3D nanodendrites consisting of Pd and N-doped carbon nanoparticles as bifunctional catalysts. Green Chem 18(7):2115–2121

    Article  CAS  Google Scholar 

  40. Deka P, Deka RC, Bharali P (2014) In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J Chem 38(4):1789–1793

    Article  CAS  Google Scholar 

  41. Riyapan S, Zhang Y, Wongkaew A, Pongthawornsakun B, Monnier JR, Panpranot J (2016) Preparation of improved Ag–Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene. Catal Sci Technol 6(14):5608–5617

    Article  CAS  Google Scholar 

  42. Neumann CC, Laborda E, Tschulik K, Ward KR, Compton RG (2013) Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: efficiency limitation due to hydrogen peroxide escape. Nano Res 6(7):511–524

    Article  CAS  Google Scholar 

  43. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PA, Marquis EA, Smith GD, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nat Nanotechnol 6(5):302–307

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y (2013) Core–shell nanostructured catalysts. Acc Chem Res 46(8):1816–1824

    Article  CAS  PubMed  Google Scholar 

  45. Béguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17(19):2380–2384

    Article  Google Scholar 

  46. Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50(12):2499–2506

    Article  CAS  Google Scholar 

  47. Shaham G, Veisi H, Hekmati M (2017) Silver nanoparticle-decorated multiwalled carbon nanotube/pramipexole nanocomposite: synthesis, characterization and application as an antibacterial agent. Appl Organomet Chem 31(10):e3737

    Article  Google Scholar 

  48. Chen ML, Bae JS, Oh WC (2006) Characterization of AC/TiO2 composite prepared with pitch binder and their photocatalytic activity. Bull Korean Chem Soc 27(9):1423–1428

    Article  CAS  Google Scholar 

  49. Shameli K, Ahmad MB, Zargar M, Yunus WMZW, Rustaiyan A, Ibrahim NA (2011) Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int J Nanomedicine 6:581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64(12):5042–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li J, Liu C, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22(17):8426–8430

    Article  CAS  Google Scholar 

  53. Li H, Han L, Cooper-White J, Kim I (2012) Palladium nanoparticles decorated carbon nanotubes: facile synthesis and their applications as highly efficient catalysts for the reduction of 4-nitrophenol. Green Chem 14(3):586–591

    Article  CAS  Google Scholar 

  54. Shen J, Zhou Y, Huang J, Zhu Y, Zhu J, Yang X, Chen W, Yao Y, Qian S, Jiang H, Li C (2017) In situ SERS monitoring of reaction catalyzed by multifunctional Fe3O4@TiO2@Ag–Au Microspheres. Appl Catal B 205:11–18

    Article  CAS  Google Scholar 

  55. Jiang L, Zhu W, Wang C, Dong W, Zhang L, Wang G, Chen B, Li C, Zhang X (2016) Preparation of hollow Ag/Pt heterostructures on TiO2 nanowires and their catalytic properties. Appl Catal B 180:344–350

    Article  CAS  Google Scholar 

  56. Mohamed MM, Al-Sharif MS (2013) Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates. Appl Catal B 142:432–441

    Article  Google Scholar 

  57. Pongthawornsakun B, Mekasuwandumrong O, Santos Aires FJC, Büchel R, Baiker A, Pratsinis SE, Panpranot J (2018) Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au–Pd–TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Appl Catal A 549:1–7

    Article  CAS  Google Scholar 

  58. Xi J, Xiao J, Xiao F, Jin Y, Dong Y, Jing F, Wang S (2016) Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci Rep 6(1):1–8

    Article  Google Scholar 

  59. He J, Ji W, Yao L, Wang Y, Khezri B, Webster RD, Chen H (2014) Strategy for nano-catalysis in a fixed-bed system. Adv Mater 26(24):4151–4155

    Article  CAS  PubMed  Google Scholar 

  60. Li B, Guan Z, Wang W, Yang X, Hu J, Tan B, Li T (2012) Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki-Miyaura coupling reactions of aryl chlorides in aqueous media. Adv Mater 24(25):3390–3395

    Article  CAS  PubMed  Google Scholar 

  61. Singh M, Haverinen HM, Dahgat P, Jabbour JE (2010) Inkjet printing—process and its applications. Adv Mater 22(6):673–685

    Article  CAS  PubMed  Google Scholar 

  62. Ramesan MT, Varghese M, Periyat JPP (2018) Silver-doped zinc oxide as a nanofiller for development of poly(vinyl alcohol)/Poly(vinyl pyrrolidone) blend nanocomposites. Adv Polym Technol 37(1):137–143

    Article  CAS  Google Scholar 

  63. Ozkazanc H (2016) Characterization and charge transfer mechanism of PIN–cdse nanocomposites. Polym Compos 37(10):3057–3065

    Article  CAS  Google Scholar 

  64. Ramesan MT (2013) Synthesis and characterization of magnetoelectric nanomaterial composed of Fe3O4 and polyindole. Adv Polym Technol 32(3):21362

    Article  Google Scholar 

  65. Zhang P, Shao C, Li X, Zhang M, Zhang X, Su C, Lu N, Wang K, Liu Y (2013) An electron-rich free-standing carbon@ Au core–shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol. Phys Chem Chem Phys 15(25):10453–10458

    Article  CAS  PubMed  Google Scholar 

  66. Dong Z, Le X, Li X, Zhang W, Dong C, Ma J (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B Environ 158:129–135

    Article  Google Scholar 

  67. Chiou JR, Lai BH, Hsu KC, Chen DH (2013) One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater 248:394–400

    Article  PubMed  Google Scholar 

  68. Jamal R, Zhang L, Wang M, Zhao Q, Abdiryim T (2016) Synthesis of poly (3, 4-propylenedioxythiophene)/MnO2 composites and their applications in the adsorptive removal of methylene blue. Prog Nat Sci 26(1):32–40

    Article  CAS  Google Scholar 

  69. Yao T, Cui T, Wang H, Xu L, Cui F, Wu J (2014) A simple way to prepare Au@ polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye. Nanoscale 6(13):7666–7674

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Q, Jiang X, Kirillov AM, Zhang Y, Hu M, Liu W, Yang L, Fang R, Liu W (2019) Covalent construction of sustainable hybrid UiO-66-NH2@Tb-CP material for selective removal of dyes and detection of metal ions. ACS Sustain Chem Eng 7:3203

    Article  CAS  Google Scholar 

  71. Seo K, Sinha K, Novitskaya E, Graeve OA (2018) Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater Lett 215:203–206

    Article  CAS  Google Scholar 

  72. Khodaei MM, Karegar M (2021) Synthesis and characterization of copper nanoparticles stabilized with polyvinyl pyrrolidone and its performance on the conductivity and stability of polyindole. J Iran Chem Soc 18(4):863–872

    Article  CAS  Google Scholar 

  73. Ramesan MT (2012) Fabrication and characterization of conducting nanomaterials composed of copper sulfide and polyindole. Polym Compos 33(12):2169–2176

    Article  CAS  Google Scholar 

  74. Bagherzadeh M, Mousavi O, Ghahfarokhi ZS (2020) Fabrication and characterization of a Fe3O4 /polyvinylpyrrolidone (Fe3O4/PVP) nanocomposite as a coating for carbon steel in saline media. New J Chem 44(35):15148–15156

    Article  Google Scholar 

  75. Zhang H, Zhong X, Xu JJ, Chen HY (2008) Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 24(23):13748–13752

    Article  CAS  PubMed  Google Scholar 

  76. Wang L, Wang L, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin Y, Kim N, Wang JQ, Zhong CJ (2005) Monodispersed core−shell Fe3O4@ Au nanoparticles. J Phys Chem B 109(46):21593–21601

    Article  CAS  PubMed  Google Scholar 

  77. Das TK, Ganguly S, Remanan S, Ghosh S, Das NC (2020) Mussel-inspired Ag/poly (norepinephrine)/MnO2 heterogeneous nanocatalyst for efficient reduction of 4-nitrophenol and 4-nitroaniline: an alternative approach. Res Chem Intermed 46(7):3629–3650

    Article  CAS  Google Scholar 

  78. Mahmud HNME, Huq AO, binti Yahya R (2016) The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv 6(18):14778–14791

    Article  Google Scholar 

  79. Karegar M, Khodaei MM (2021) Synthesis of Fe3O4-PVP nanocomposite functionalized with sulfonic group as an effective catalyst for one-pot synthesis of xanthene derivatives. Res Chem Intermed 47:1–19

    Article  Google Scholar 

  80. Xu J, Hou J, Zhou W, Nie G, Pu S, Zhang S (2006) 1H NMR spectral studies on the polymerization mechanism of indole and its derivatives. Spectrochim Acta Part A 63(3):723–728

    Article  Google Scholar 

  81. Laban BB, Vodnik V, Vasić V (2015) Spectrophotometric observations of thiacyanine dye J-aggregation on citrate capped silver nanoparticles. Nanospectroscopy 1(1):54–60

    Article  Google Scholar 

  82. Laban B, Zeković I, Vasić Anićijević D, Marković M, Vodnik V, Luce M, Cricenti A, Dramićanin M, Vasić V (2016) Mechanism of 3, 3′-disulfopropyl-5, 5′-dichlorothiacyanine anion interaction with citrate-capped silver nanoparticles: adsorption and J-aggregation. J Phys Chem C 120(32):18066–18074

  83. Zhang S, Gao H, Li J, Huang Y, Alsaedi A, Hayat T, Xu X, Wang X (2017) Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis. J Hazard Mater 321:92–102

    Article  CAS  PubMed  Google Scholar 

  84. Dong Z, Le X, Dong C, Zhang W, Li X, Ma J (2015) Ni@ Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl Catal B Environ 162:372–380

    Article  CAS  Google Scholar 

  85. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B Environ 181:371–378

    Article  CAS  Google Scholar 

  86. Dong Z, Yu G, Le X (2015) Gold nanoparticle modified magnetic fibrous silica microspheres as a highly efficient and recyclable catalyst for the reduction of 4-nitrophenol. New J Chem 39(11):8623–8629

    Article  CAS  Google Scholar 

  87. Wang YY, Shu Y, Xu J, Pang H (2017) Facile one-step synthesis of Ag@ CeO2 core–shell nanospheres with efficient catalytic activity for the reduction of 4-nitrophenol. CrystEngComm 19(4):684–689

    Article  Google Scholar 

  88. Qi Y, Ye J, Ren S, Lv J, Zhang S, Che Y, Ning G (2020) In-situ synthesis of metal nanoparticles@ metal−organic frameworks: highly effective catalytic performance and synergistic antimicrobial activity. J Hazard Mater 387:121687

    Article  CAS  PubMed  Google Scholar 

  89. Huang J, Vongehr S, Tang S, Lu H, Meng X (2010) Highly catalytic Pd− Ag bimetallic dendrites. J Phys Chem C 114(35):15005–15010

    Article  CAS  Google Scholar 

  90. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3(8):3357–3363

    Article  CAS  PubMed  Google Scholar 

  91. Zhang J, Chen G, Chaker M, Rosei F, Ma D (2013) Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Appl Catal B Environ 132:107–115

    Article  Google Scholar 

  92. Bashir MS, Jiang X, Li S, Kong XZ (2019) Highly uniform and porous polyurea microspheres: clean and easy preparation by interface polymerization, palladium incorporation, and high catalytic performance for dye degradation. Front Chem 7:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Khan MM, Lee J, Cho MH (2014) Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind Eng Chem 20(4):1584–1590

    Article  CAS  Google Scholar 

  94. Abay AK, Chen X, Kuo DH (2017) Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants. New J Chem 41(13):5628–5638

    Article  CAS  Google Scholar 

  95. Mekki A, Mokhtar A, Hachemaoui M, Beldjilali M, fethia Meliani M, Zahmani HH, Hacini S, Boukoussa B (2021) Fe and Ni nanoparticles-loaded zeolites as effective catalysts for catalytic reduction of organic pollutants. Microporous Mesoporous Mater 310:110597

    Article  CAS  Google Scholar 

  96. Liao G, Li Q, Zhao W, Pang Q, Gao H, Xu Z (2018) In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl Catal A Gen 549:102–111

    Article  CAS  Google Scholar 

  97. Zhou A, Li J, Wang G, Xu Q (2020) Preparation of Ag/ZrGP nanocomposites with enhanced catalytic activity for catalytic reduction of 4-nitrophenol. Appl Surf Sci 506:144570

    Article  CAS  Google Scholar 

  98. Chen T, Fang Q, Zhou L, Xu Z, Qiu J, Wang M, Wang J (2019) Comparative study of cross-linked and linear thermo-responsive carriers supported palladium nanoparticles in the reduction of 4-nitrophenol: structure, catalytic activity and responsive catalysis property. React Funct Polym 142:104–111

    Article  CAS  Google Scholar 

  99. Yadav M, Aijaz A, Xu Q (2012) Highly catalytically active palladium nanoparticles incorporated inside metal-organic framework pores by double solvents method. Funct Mater Lett 5(04):1250039

    Article  Google Scholar 

  100. Ding ZD, Wang YX, Xi SF, Li Y, Li Z, Ren X, Gu ZG (2016) A hexagonal covalent porphyrin framework as an efficient support for gold nanoparticles toward catalytic reduction of 4-Nitrophenol. Chem Eur J 22(47):17029–17036

    Article  CAS  PubMed  Google Scholar 

  101. Wang M, Tian D, Tian P, Yuan L (2013) Synthesis of micron-SiO2@ nano-Ag particles and their catalytic performance in 4-nitrophenol reduction. Appl surf sci 283:389–395

    Article  CAS  Google Scholar 

  102. Sahiner N, Ozay O (2012) Enhanced catalytic activity in the reduction of 4-nitrophenol and 2-nitrophenol by p (AMPS)-Cu (0) hydrogel composite materials. Curr Nanosci 8(3):367–374

    Article  CAS  Google Scholar 

  103. Veerakumar P, Chen SM, Madhu R, Veeramani V, Hung CT, Liu SB (2015) Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg (II) ions. ACS Appl Mater Interfaces 7(44):24810–24821

    Article  CAS  PubMed  Google Scholar 

  104. Saha J, Begum A, Mukherjee A, Kumar S (2017) A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain Environ Res 27(5):245–250

    Article  CAS  Google Scholar 

  105. Zare EN, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173–195

    Article  CAS  PubMed  Google Scholar 

  106. Wang Y, Gao P, Wei Y, Jin Y, Sun S, Wang Z, Jiang Y (2021) Silver nanoparticles decorated magnetic polymer composites (Fe3O4@ PS@ Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes. J Environ Manag 278:111473

    Article  CAS  Google Scholar 

  107. Han XW, Bi S, Zhang W, Yang Z (2019) One-step fabrication of highly dispersed Ag nanoparticles decorated N-doped reduced graphene oxide heterogeneous nanostructure for the catalytic reduction of 4-nitrophenol. Colloids Surf A Physicochem Eng Asp 574:69–77

    Article  CAS  Google Scholar 

  108. Mallick K, Witcomb M, Scurrell M (2006) Silver nanoparticle catalyzed redox reaction: an electron relay effect. Mater Chem Phys 97(2–3):283–287

    Article  CAS  Google Scholar 

  109. Yan B, Chen Z, Cai L, Chen Z, Fu J, Xu Q (2015) Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl Surf Sci 356:39–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Razi University, Kermanshah, Iran for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Khodaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karegar, M., Khodaei, M.M. Magnetic polyindole-Ag composite for the catalytic reduction and removing of the organic pollutants. Polym. Bull. 79, 11431–11460 (2022). https://doi.org/10.1007/s00289-021-04043-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04043-8

Keywords

Navigation