Skip to main content
Log in

Synthesize and characterization of Co-complex as interlayer for Schottky type photodiode

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nicotinamide/nicotinic acid complexes with centered Co metal (called Co-complexes) were synthesized by chemically reactions and characterized by thermogravimetric analysis (TGA), UV–Vis spectrometer and atomic force microscopy (AFM) techniques. While the composition of the Co-complexes was confirmed by TGA, the compatibilities of the Co-complexes for optoelectronic devices were revealed by UV–Vis spectrometer and AFM techniques. The Co-complexes were dissolved in water for various weight amounts of 0.5 mg, 1.0 mg, 2.0 mg and 3.0 mg, and solutions were coated onto Si wafer pieces to obtain Co-complex interlayered film in the Al/p-Si metal semiconductor devices. IV and It measurements were performed to investigate photodiode and photodetector behaviors of the Al/Co-complex/p-Si devices for various light power illumination intensities. The result revealed that Al/Co-complex/p-Si devices can be used for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714. https://doi.org/10.1038/nature01650

    Article  CAS  PubMed  Google Scholar 

  2. Hagrman PJ, Hagrman D, Zubieta J (1999) Organic-inorganic hybrid materials: from “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angew Chem Int Ed 38:2638–2684. https://doi.org/10.1002/(sici)1521-3773(19990917)38:18%3c2638::aid-anie2638%3e3.3.co;2-w

    Article  CAS  Google Scholar 

  3. Erxleben A (2003) Structures and properties of Zn(II) coordination polymers. Coord Chem Rev 246:203–228. https://doi.org/10.1016/S0010-8545(03)00117-6

    Article  CAS  Google Scholar 

  4. Rao CNR, Natarajan S, Vaidhyanathan R (2004) Metal carboxylates with open architectures. Angew Chem - Int Ed 43:1466–1496. https://doi.org/10.1002/anie.200300588

    Article  CAS  Google Scholar 

  5. Kim J, Lee U, Koo BK (2010) 1D chain crystal structure of copper(II) oxalate containing a 4,4’-bipyridine and 1,10-phenanthroline ligands: [Cu2(ox)(4,4’-bpy) (phen)2](NO3)2. Bull Korean Chem Soc 31:487–490. https://doi.org/10.5012/bkcs.2010.31.02.487

    Article  CAS  Google Scholar 

  6. Kim J, Lee U, Koo BK (2010) Synthesis and 1D Chain crystal structure of zinc(II) terephthalate complex: [Zn(tp)(py)(H2O)]n. Bull Korean Chem Soc 31:1743–1746. https://doi.org/10.5012/bkcs.2010.31.6.1743

    Article  CAS  Google Scholar 

  7. Koo BK, Kim J, Lee U (2010) Synthesis and crystal structures of di- and tetra-nuclear dicarboxylate-bridged copper(II) complexes. Inorg Chim Acta 363:1760–1766. https://doi.org/10.1016/j.ica.2010.02.032

    Article  CAS  Google Scholar 

  8. Go YB, Wang X, Anokhina EV, Jacobson AJ (2005) Influence of the reaction temperature and ph on the coordination modes of the 1,4-Benzenedicarboxylate (BDC) ligand: a case study of the NiII(BDC)/2,2‘-bipyridine system. Inorg Chem 44:8265–8271. https://doi.org/10.1021/IC050644D

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Wang R, Li Y (2004) Zn2Na2(BDC)3·(DMF)2·(μ-H2O)2: rare 3D channel-structures with pendant DMF constructed by carboxyl group bridging heterometallic ions. J Mol Struct 688:1–3. https://doi.org/10.1016/J.MOLSTRUC.2003.07.003

    Article  CAS  Google Scholar 

  10. Hao N, Li Y, Wang E, Shen E, Hu C, Xu L (2004) Hydrothermal synthesis and crystal structure of an infinite 1D ladderlike metal-organic compound: [Cu2(btec)(2,2′-bipy)2] ∞ (btec = 1,2,4,5-benzenetetracarboxylate). J Mol Struct 697:1–8. https://doi.org/10.1016/S0022-2860(03)00349-1

    Article  CAS  Google Scholar 

  11. Koo BK (2012) Synthesis and crystal structures of MN(II)- and NI(II)-dicarboxylate complexes with 1,10-phenanthroline. Bull Korean Chem Soc 33:2299–2304. https://doi.org/10.5012/bkcs.2012.33.7.2299

    Article  CAS  Google Scholar 

  12. Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc Chem Res 31:474–484. https://doi.org/10.1021/ar970151f

    Article  CAS  Google Scholar 

  13. Zhang Z, Zhao Y, Gong Q, Lib Z, Li J (2013) MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chem Commun 49:653–661. https://doi.org/10.1039/c2cc35561b

    Article  CAS  Google Scholar 

  14. Baumann AE, Burns DA, Liu B, Thoi VS (2019) Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 2:1–14. https://doi.org/10.1038/s42004-019-0184-6

    Article  Google Scholar 

  15. García-Valdivia AA, Pérez-Yáñez S, García JA, Fernández B, Cepeda J, Rodríguez-Diéguez A (2020) Magnetic and photoluminescent sensors based on metal-organic frameworks built up from 2-aminoisonicotinate. Sci Rep 10:1–17. https://doi.org/10.1038/s41598-020-65687-6

    Article  CAS  Google Scholar 

  16. Chae HK, Kim J, Friedrichs OD, O’Keeffe M, Yaghi OM (2003) Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology. Angew Chem Int Ed 42:3907–3909. https://doi.org/10.1002/anie.200351546

    Article  CAS  Google Scholar 

  17. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674. https://doi.org/10.1021/cr300014x

    Article  CAS  PubMed  Google Scholar 

  18. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J (2006) Metal-organic frameworks–prospective industrial applications. J Mater Chem 16:626–636. https://doi.org/10.1039/b511962f

    Article  CAS  Google Scholar 

  19. Jacoby M (2008) Heading to market with MOFS. Chem Eng News 86:13–16. https://doi.org/10.1021/cen-v086n034.p013

    Article  Google Scholar 

  20. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472. https://doi.org/10.1126/science.1067208

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Cohen SM (2007) Postsynthetic covalent modification of a neutral metal-organic framework. J Am Chem Soc 129:12368–12369. https://doi.org/10.1021/ja074366o

    Article  CAS  PubMed  Google Scholar 

  22. Köse DA, Öztürk B, Şahin O, Büyükgüngör O (2013) Mixed ligand complexes of coumarilic acid/nicotinamide with transition metal complexes. J Therm Anal Calorim 115:1515–1524. https://doi.org/10.1007/S10973-013-3415-6

    Article  Google Scholar 

  23. Köse DA, Akkurt F, Şahin O, Büyükgüngör O (2014) Synthesis and structural characterization of a binuclear mixed-ligand (Salicylate and N, N-diethylnicotinamide) nickel(II) complex, its magnetic properties. [Ni2(μ-Sal)4(Dena)2]H2O. J Chin Chem Soc 61:1326–1332. https://doi.org/10.1002/jccs.201400292

    Article  CAS  Google Scholar 

  24. Köse DA, Necefoglu H, Icbudak H (2008) Synthesis and characterization of N, N-diethylnicotinamide-acetylsalicylato complexes of Co(II), Ni(II), Cu(II), and Zn(II). J Coord Chem 61:3508–3515. https://doi.org/10.1080/00958970802074555

    Article  CAS  Google Scholar 

  25. Köse DA, Ay AN, Şahin O, Büyükgüngör O (2012) A mononuclear, mixed (salicylato) (nicotinamide) complex of Zn(II) with penta- and hexa-coordination sites: a novel framework structure. J Iran Chem Soc 9:591–597. https://doi.org/10.1007/S13738-012-0072-9

    Article  Google Scholar 

  26. Icbudak H, Heren Z, Kose DA, Necefoglu H (2004) bis(nicotinamide) and bis(N, N-diethyl nicotinamide) p-hydroxybenzoate complexes of Ni(II), Cu(II) AND Zn(II). J Therm Anal Calorim 76:837–851. https://doi.org/10.1023/B:JTAN.0000032269.12381.42

    Article  CAS  Google Scholar 

  27. Kasper M, Gramse G, Hoffmann J, Gaquiere C, Feger R, Stelzer A, Smoliner J, Kienberger F (2014) Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18GHz. J Appl Phys 116:184301. https://doi.org/10.1063/1.4897922

    Article  CAS  Google Scholar 

  28. Tian H, Tan Z, Wu C, Wang X, Mohammad MA, Xie D, Yang Y, Wang J, Li LJ, Xu J, Ren TL (2014) Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions. Sci Rep 4:1–9. https://doi.org/10.1038/srep05951

    Article  CAS  Google Scholar 

  29. Mathew M, Rout CS (2021) Schottky diodes based on 2D materials for environmental gas monitoring: a review on emerging trends, recent developments and future perspectives. J Mater Chem C 9:395–416. https://doi.org/10.1039/d0tc04840b

    Article  CAS  Google Scholar 

  30. Çetinkaya HG, Alialy S, Altındal Ş, Kaya A, Uslu I (2015) Investigation of negative dielectric constant in Au/1 % graphene (GP) doped-Ca1.9Pr0.1Co4Ox/n-Si structures at forward biases using impedance spectroscopy analysis. J Mater Sci Mater Electron 26:3186–3195. https://doi.org/10.1007/s10854-015-2816-7

    Article  CAS  Google Scholar 

  31. Köse DA, Necefoğlu H, Şahin O, Büyükgüngör O (2012) Synthesis, structural, spectroscopic characterization, and structural comparison of 3-hydroxybenzoate and nicotinamide/N, N-diethylnicotinamide mixed ligand complexes with Zn(II). J Therm Anal Calorim 110:1233–1241. https://doi.org/10.1007/s10973-011-2134-0

    Article  CAS  Google Scholar 

  32. Dağlı Ö, Köse DA, Şahin O, Şahin ZS (2017) The synthesis and structural characterization of transition metal coordination complexes of coumarilic acid. J Therm Anal Calorim 128:1373–1383. https://doi.org/10.1007/s10973-016-6053-y

    Article  CAS  Google Scholar 

  33. Jubu PR, Yam FK, Igba VM, Beh KP (2020) Tauc-plot scale and extrapolation effect on bandgap estimation from UV–Vis–NIR data—a case study of β-Ga2O3. J Solid State Chem 290:121576. https://doi.org/10.1016/j.jssc.2020.121576

    Article  CAS  Google Scholar 

  34. Cifci OS, Bakir M, Meyer JL, Kocyigit A (2018) Morphological and electrical properties of ATSP/p-Si photodiode. Mater Sci Semicond Process 74:175–182. https://doi.org/10.1016/j.mssp.2017.10.039

    Article  CAS  Google Scholar 

  35. Gozeh BA, Karabulut A, Ismael CB, Saleh SI, Yakuphanoglu F (2021) Zn-doped CdO effects on the optical, electrical and photoresponse properties of heterojunctions-based photodiodes. J Alloys Compd 872:159624. https://doi.org/10.1016/j.jallcom.2021.159624

    Article  CAS  Google Scholar 

  36. Altindal Ş, Karadeniz S, Tuǧluoǧlu N, Tataroglu A (2003) The role of interface states and series resistance on the IV and CV characteristics in Al/SnO2/p-Si Schottky diodes. Solid State Electron 47:1847–1854. https://doi.org/10.1016/S0038-1101(03)00182-5

    Article  CAS  Google Scholar 

  37. Uslu H, Altndal Ş, Dökme I (2010) Illumination effect on electrical characteristics of organic-based Schottky barrier diodes. J Appl Phys 108:104501. https://doi.org/10.1063/1.3504598

    Article  CAS  Google Scholar 

  38. Peta KR, Kim MD (2018) Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode. Superlattices Microstruct 113:678–683. https://doi.org/10.1016/j.spmi.2017.11.056

    Article  CAS  Google Scholar 

  39. Yıldız DE (2018) Electrical properties of Au–Cu/ZnO/p-Si diode fabricated by atomic layer deposition. J Mater Sci Mater Electron 29:17802–17808. https://doi.org/10.1007/s10854-018-9889-z

    Article  CAS  Google Scholar 

  40. Yigiterol F, Güllü HH, Yıldız Bayraklı D.E. (2018) Temperature-dependent electrical characteristics of Au/Si3N4/4H n-SiC MIS diode. J Electron Mater 47:2979–2987. https://doi.org/10.1007/s11664-018-6155-3

    Article  CAS  Google Scholar 

  41. Orak İ, Kocyiğit A, Karataş Ş (2018) The analysis of the electrical and photovoltaic properties of Cr/p-Si structures using current-voltage measurements. Silicon 10:2109–2116. https://doi.org/10.1007/s12633-017-9731-x

    Article  CAS  Google Scholar 

  42. Balbasi CD, Terlemezoglu M, Gullu HH, Yildiz DE, Parlak M (2020) Electrical characterization of CdZnTe/Si diode structure. Appl Phys A Mater Sci Process 126:614. https://doi.org/10.1007/s00339-020-03772-3

    Article  CAS  Google Scholar 

  43. Rao LD, Reddy VR, (2016) Electrical parameters and series resistance analysis of Au/Y/p-InP/Pt Schottky barrier diode at room temperature. In: AIP Conference Proceedings, AIP Publishing LLC, Melville, p 120020

  44. Kocyigit A, Yilmaz M, Aydogan S, İncekara Ü, Kacus H (2021) Comparison of n and p type Si-based Schottky photodiode with interlayered Congo red dye. Mater Sci Semicond Process 135:106045. https://doi.org/10.1016/j.mssp.2021.106045

    Article  CAS  Google Scholar 

  45. Taşçıoğlu İ, Farooq WA, Turan R, Altındal Ş, Yakuphanoglu F (2014) Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes. J Alloys Compd 590:157–161. https://doi.org/10.1016/J.JALLCOM.2013.12.043

    Article  Google Scholar 

  46. Yıldırım M, Kocyigit A, Sarılmaz A, Ozel F (2019) The effect of the triangular and spherical shaped CuSbS2 structure on the electrical properties of Au/CuSbS2/p-Si photodiode. J Mater Sci Mater Electron 30:332–339. https://doi.org/10.1007/s10854-018-0297-1

    Article  CAS  Google Scholar 

  47. Anh Tuan TT, Kuo D-H (2015) Characteristics of RF reactive sputter-deposited Pt/SiO2/n-InGaN MOS Schottky diodes. Mater Sci Semicond Process 30:314–320. https://doi.org/10.1016/j.mssp.2014.10.021

    Article  CAS  Google Scholar 

  48. Yilmaz M, Kocyigit A, Cirak BB, Kacus H, Incekara U, Aydogan S (2020) The comparison of Co/hematoxylin/n-Si and Co/hematoxylin/p-Si devices as rectifier for a wide range temperature. Mater Sci Semicond Process 113:105039. https://doi.org/10.1016/j.mssp.2020.105039

    Article  CAS  Google Scholar 

  49. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85. https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  50. Kocyigit A, Orak I, Çaldıran Z, Turut A (2017) Current–voltage characteristics of Au/ZnO/n-Si device in a wide range temperature. J Mater Sci Mater Electron 28:17177–17184. https://doi.org/10.1007/s10854-017-7646-3

    Article  CAS  Google Scholar 

  51. Kocyigit A, Yılmaz M, Aydoğan Ş, İncekara Ü (2019) The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. J Alloys Compd 790:388–396. https://doi.org/10.1016/j.jallcom.2019.03.179

    Article  CAS  Google Scholar 

  52. Shkir M, Khan MT, Ashraf IM, Almohammedi A, Dieguez E, AlFaify S (2019) High-performance visible light photodetectors based on inorganic CZT and InCZT single crystals. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-48621-3

    Article  CAS  Google Scholar 

  53. Li C, Li J, Li Z, Zhang H, Dang Y, Kong F (2021) High-performance photodetectors based on nanostructured perovskites. Nanomaterials 11:1038. https://doi.org/10.3390/nano11041038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gullu HH, Yildiz DE, Kocyigit A, Yıldırım M (2020) Electrical properties of Al/PCBM:ZnO/p-Si heterojunction for photodiode application. J Alloys Compd 827:154279. https://doi.org/10.1016/j.jallcom.2020.154279

    Article  CAS  Google Scholar 

  55. Yildiz DE, Gullu HH, Sarilmaz A, Ozel F, Kocyigit A, Yildirim M (2020) Dark and illuminated electrical characteristics of Si-based photodiode interlayered with CuCo5S8 nanocrystals. J Mater Sci Mater Electron 31:935–948. https://doi.org/10.1007/s10854-019-02603-3

    Article  CAS  Google Scholar 

  56. Çavaş M, Yakuphanoglu F, Kaya S (2016) Electrical and photoconductivity properties of Al/CdFe2O4/p-Si/Al photodiode. J Photon 2016:1–7. https://doi.org/10.1155/2016/4739020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kocyigit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocyigit, A., Yıldırım, M., Kose, D.A. et al. Synthesize and characterization of Co-complex as interlayer for Schottky type photodiode. Polym. Bull. 79, 11389–11408 (2022). https://doi.org/10.1007/s00289-021-04021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04021-0

Keywords

Navigation