Skip to main content
Log in

Polyaniline-decorated Macadamia nutshell composite: an adsorbent for the removal of highly toxic Cr(VI) and efficient catalytic activity of the spent adsorbent for reuse

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, a novel polyaniline-decorated lignocellulose composite adsorbent made by modifying macadamia nutshells (MNS) with polyaniline (PANI) for the uptake of Cr(VI) is reported. The as-synthesised MNS–PANI was characterised using Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, field emission scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy and Brunauer–Emmett–Teller surface area analysis. Batch adsorption experiments were carried out to investigate the adsorptive behaviour of MNS–PANI with Cr(VI). The uptake of Cr(VI) was well described by a pseudo-second-order kinetics model, while the adsorption isotherm best fitted the Langmuir model with a maximum adsorption capacity of 384.6 mg/g at 45 °C. Thermodynamic parameters obtained revealed endothermic and spontaneous uptake of Cr(VI) by MNS–PANI. The spent adsorbent was further applied for the photocatalytic degradation of ciprofloxacin, and 86% of the pharmaceutical was efficiently degraded within 80 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Priya AK et al (2022) Investigation of mechanism of heavy metals (Cr6+, Pb2+& Zn2+) adsorption from aqueous medium using rice husk ash: kinetic and thermodynamic approach. Chemosphere 286:131796

    Article  CAS  Google Scholar 

  2. Aryee AA et al (2022) Magnetic biocomposite based on peanut husk for adsorption of hexavalent chromium, congo red and phosphate from solution: characterization, kinetics, equilibrium, mechanism and antibacterial studies. Chemosphere 287:132030

    Article  CAS  Google Scholar 

  3. Thangagiri B et al (2022) Removal of hexavalent chromium by biochar derived from azadirachta indica leaves: batch and column studies. Chemosphere 286:131598

    Article  CAS  Google Scholar 

  4. Zhou H et al (2022) Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (VI) in aqueous solutions. J Environ Sci (China) 115:227–239

    Article  CAS  Google Scholar 

  5. Lou J et al (2021) Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]. Environ Int 153:106525

    Article  CAS  Google Scholar 

  6. Laabd M et al (2022) Efficient detoxification of Cr(VI)-containing effluents by sequential adsorption and reduction using a novel cysteine-doped PANi@faujasite composite: experimental study supported by advanced statistical physics prediction. J Hazard Mater 422:126857

    Article  CAS  Google Scholar 

  7. Kazemi A et al (2022) Health risk assessment of total chromium in the qanat as historical drinking water supplying system. Sci Total Environ 807:150795

    Article  CAS  Google Scholar 

  8. Shi T et al (2021) Highly efficient and selective adsorption of heavy metal ions by hydrazide-modified sodium alginate. Carbohydr Polym 276:118797

    Article  Google Scholar 

  9. Bhaumik M et al (2012) Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem Eng J 181:323–333

    Article  Google Scholar 

  10. Krishnani KK et al (2013) Hexavalent chromium removal mechanism using conducting polymers. J Hazard Mater 252:99–106

    Article  Google Scholar 

  11. Ou J-H et al (2020) Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Chemosphere 256:127158

    Article  CAS  Google Scholar 

  12. Ravikumar K, Udayakumar J (2019) Moringa oleifera gum composite a novel material for heavy metals removal. Int J Environ Anal Chem

  13. Xie Y et al (2020) Removal of anionic hexavalent chromium and methyl orange pollutants by using imidazolium-based mesoporous poly (ionic liquid) s as efficient adsorbents in column. J Hazard Mater 392:122496

    Article  CAS  Google Scholar 

  14. He PY et al (2020) Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium (VI) separation from aqueous solution. J Hazard Mater 392:122359

    Article  CAS  Google Scholar 

  15. Saw PK, Prajapati AK, Mondal MK (2018) The extraction of Cr (VI) from aqueous solution with a mixture of TEA and TOA as synergic extractant by using different diluents. J Mol Liq 269:101–109

    Article  CAS  Google Scholar 

  16. Salvado JA et al (2019) Hexavalent chromium removal from tunneling wastewater using chemical and electrochemical techniques. Desalin Water Treat 157:315–323

    Article  CAS  Google Scholar 

  17. Kera NH et al (2017) Selective removal of toxic Cr (VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. J Colloid Interface Sci 503:214–228

    Article  CAS  Google Scholar 

  18. Darmokoesoemo H et al (2016) Horn snail (Telescopium sp) and mud crab (Scylla sp) shells powder as low cost adsorbents for removal of Cu 2+ from synthetic wastewater. Rasayan J Chem 9(4):550–555

    CAS  Google Scholar 

  19. Darmokoesoemo H, Magdhalena PT, Kusuma H (2016) Telescope snail (Telescopium sp) and Mangrove crab (Scylla sp) as adsorbent for the removal of Pb 2+ from aqueous solutions. Rasayan J Chem 9(4):680–685

    CAS  Google Scholar 

  20. Kuncoro EP et al (2018) Characterization and isotherm data for adsorption of Cd2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data Brief 16:354–360

    Article  Google Scholar 

  21. Kuncoro EP et al (2018) Characterization, kinetic, and isotherm data for adsorption of Pb2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data Brief 16:622–629

    Article  Google Scholar 

  22. Kuncoro EP et al (2018) Characterization of a mixture of algae waste-bentonite used as adsorbent for the removal of Pb2+ from aqueous solution. Data Brief 16:908–913

    Article  Google Scholar 

  23. Kera NH et al (2018) m-Phenylenediamine-modified polypyrrole as an efficient adsorbent for removal of highly toxic hexavalent chromium in water. Mater Today Commun 15:153–164

    Article  CAS  Google Scholar 

  24. Velempini T et al (2017) Epichlorohydrin crosslinked carboxymethyl cellulose-ethylenediamine imprinted polymer for the selective uptake of Cr (VI). Int J Biol Macromol 101:837–844

    Article  CAS  Google Scholar 

  25. Huang Z-N, Wang X-L, Yang D-S (2015) Adsorption of Cr (VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci Eng 8(3):226–232

    Article  Google Scholar 

  26. Mahapatra U, Manna AK, Chatterjee A (2022) A critical evaluation of conventional kinetic and isotherm modeling for adsorptive removal of hexavalent chromium and methylene blue by natural rubber sludge-derived activated carbon and commercial activated carbon. Bioresour Technol 343:126135

    Article  CAS  Google Scholar 

  27. Mahmud HNME, Huq AO, Yahya RB (2016) The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. Rsc Adv 6(18):14778–14791

    Article  Google Scholar 

  28. Kera NH et al (2016) Selective removal of Cr (VI) from aqueous solution by polypyrrole/2, 5-diaminobenzene sulfonic acid composite. J Colloid Interface Sci 476:144–157

    Article  CAS  Google Scholar 

  29. Umejuru EC, Prabakaran E, Pillay K (2020) Coal fly ash coated with carbon hybrid nanocomposite for remediation of cadmium (II) and photocatalytic application of the spent adsorbent for reuse. Res Mater 7:100117

    Google Scholar 

  30. Debnath S et al (2015) Development of a polyaniline-lignocellulose composite for optimal adsorption of Congo red. Int J Biol Macromol 75:199–209

    Article  CAS  Google Scholar 

  31. Huang Y et al (2014) Applications of conjugated polymer based composites in wastewater purification. RSC Adv 4(107):62160–62178

    Article  CAS  Google Scholar 

  32. Olad A, Nabavi R (2007) Application of polyaniline for the reduction of toxic Cr (VI) in water. J Hazard Mater 147(3):845–851

    Article  CAS  Google Scholar 

  33. Ballav N et al (2018) L-cysteine doped polypyrrole (PPy@ L-Cyst): a super adsorbent for the rapid removal of Hg+ 2 and efficient catalytic activity of the spent adsorbent for reuse. Chem Eng J 345:621–630

    Article  CAS  Google Scholar 

  34. Koiki BA et al (2020) Cu2O on anodised TiO2 nanotube arrays: a heterojunction photoanode for visible light assisted electrochemical degradation of pharmaceuticals in water. Electrochim Acta 340:135944

    Article  CAS  Google Scholar 

  35. Nivesse AL et al (2021) New insights into the accessibility of native cellulose to environmental contaminants toward tritium behavior prediction. J Hazard Mater 420:1–5

    Article  Google Scholar 

  36. Li X et al (2018) Study of almond shell characteristics. Materials (Basel) 11:1782

    Article  Google Scholar 

  37. Morifi EL, Ofomaja AE, Pillay K (2020) Microwave assisted modified macadamia nutshells/Cu-Mn oxide composite for the removal of Pb (II) from aqueous solution. J Environ Chem Eng 8(4):103822

    Article  CAS  Google Scholar 

  38. Wang F et al (2020) Prepared PANI@nano hollow carbon sphere adsorbents with lappaceum shell like structure for high efficiency removal of hexavalent chromium. Chemosphere 263:128109

    Article  Google Scholar 

  39. Sambaza S, Maity A, Pillay K (2019) Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light. J Environ Chem Eng 7(1):102880

    Article  CAS  Google Scholar 

  40. Ballav N et al (2014) Polypyrrole-coated halloysite nanotube clay nanocomposite: synthesis, characterization and Cr (VI) adsorption behaviour. Appl Clay Sci 102:60–70

    Article  CAS  Google Scholar 

  41. Duman G et al (2009) Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties. Energy Fuels 23(4):2197–2204

    Article  CAS  Google Scholar 

  42. Chandrakanthi N, Careem M (2000) Thermal stability of polyaniline. Polym Bull 44(1):101–108

    Article  CAS  Google Scholar 

  43. Zhou C et al (2022) Effect of different sulfur precursors on efficient chromium(VI) removal by ZSM-5 zeolite supporting sulfide nano zero-valent iron. Chem Eng J 427:131515

    Article  CAS  Google Scholar 

  44. Chigondo M et al (2019) Magnetic arginine-functionalized polypyrrole with improved and selective chromium (VI) ions removal from water. J Mol Liq 275:778–791

    Article  CAS  Google Scholar 

  45. Karthikeyan P et al (2020) Mechanistic performance of polyaniline-substituted hexagonal boron nitride composite as a highly efficient adsorbent for the removal of phosphate, nitrate, and hexavalent chromium ions from an aqueous environment. Appl Surf Sci 511:145543

    Article  CAS  Google Scholar 

  46. Muhammad A, Bilal S (2020) Effective adsorption of hexavalent chromium and divalent nickel ions from water through polyaniline, iron oxide, and their composites. Appl Sci 10(8):2882

    Article  CAS  Google Scholar 

  47. Kumar N et al (2020) A rapid, reusable polyaniline-impregnated nanocellulose composite-based system for enhanced removal of chromium and cleaning of waste water. Sep Sci Technol 55(8):1436–1448

    Article  CAS  Google Scholar 

  48. Dognani G et al (2019) Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem Eng J 372:341–351

    Article  CAS  Google Scholar 

  49. Huang Q et al (2019) Sequential removal of aniline and heavy metal ions by jute fiber biosorbents: a practical design of modifying adsorbent with reactive adsorbate. J Mol Liq 285:288–298

    Article  CAS  Google Scholar 

  50. Lai Y et al (2019) UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water. Chem Eng J 378:122069

    Article  CAS  Google Scholar 

  51. Chávez-Guajardo AE et al (2015) Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836

    Article  Google Scholar 

  52. Debnath MK et al (2019) Single step modification of micrometer-sized polystyrene particles by electromagnetic polyaniline and sorption of chromium (VI) metal ions from water. J Appl Polym Sci 136(19):47524

    Article  Google Scholar 

  53. Hlungwane L, Viljoen EL, Pakade VE (2018) Macadamia nutshells-derived activated carbon and attapulgite clay combination for synergistic removal of Cr(VI) and Cr(III). Adsorpt Sci Technol 36:713–731

    Article  CAS  Google Scholar 

  54. Maremeni LC et al (2018) Adsorptive removal of hexavalent chromium by diphenylcarbazide-grafted macadamia nutshell powder. Bioinorg Chem Appl 2018:1–14

    Article  Google Scholar 

  55. Li G et al (2020) Investigation of the adsorption characteristics of Cr(VI) onto fly ash, pine nut shells, and modified bentonite. Desalin Water Treat 195:389–402

    Article  CAS  Google Scholar 

  56. Long F-L et al (2021) Highly efficient removal of hexavalent chromium from aqueous solution by calcined Mg/Al-layered double hydroxides/polyaniline composites. Chem Eng J 404:127084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Chemical Sciences, University of Johannesburg, and Adeiga O.I. is grateful to the Global Excellence and Stature (GES), Masters support, University of Johannesburg. The authors would also like to appreciate NRF Thuthuka and the Centre for Nanomaterials Research at the University of Johannesburg for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriveshini Pillay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeiga, O.I., Velempini, T. & Pillay, K. Polyaniline-decorated Macadamia nutshell composite: an adsorbent for the removal of highly toxic Cr(VI) and efficient catalytic activity of the spent adsorbent for reuse. Polym. Bull. 80, 1951–1973 (2023). https://doi.org/10.1007/s00289-021-04009-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04009-w

Keywords

Navigation