Skip to main content

Advertisement

Log in

A comprehensive review of polymer electrolyte for lithium-ion battery

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Energy is an essential factor in our day-to-day life. The major demand for energy in modern society has been increasing rapidly. Among all energy storage systems, batteries are one of the most efficient devices. Li-ion batteries have received huge attention due to their unique characteristics like high energy density, flexibility, lightweight, and a longer lifespan than comparable battery technologies. Solid polymer electrolytes have gained huge attention in high-performance LIB due to their high safety, no leakage, wide electrochemical stability window, mechanical flexibility, and thermal stability. In this review, a series of polymers such as PMMA, PEO, PAN, PVDF, PVDF-HFP, PVC, PVA, PS, and PC are discussed. Some of the recent publications of polymer electrolyte with different combinations of lithium salt are highlighted. The characteristics and drawbacks of commonly used lithium salt are listed. In order to improve the ionic conductivity, various salt, solvents, and inorganic filler/clay are used. This review opens doors for novel approaches and also provides the progress of new solid polymer electrolytes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michel A (1990) Polymers with ionic conductivity. Adv Mater 2:278–286

    Article  Google Scholar 

  2. Michel Armand B (1986) Polymer electrolytes. Annu Rev Mater Sci 16:245–261

    Article  Google Scholar 

  3. Sequeira CAC, Santos DMF (2010) Introduction to polymer electrolyte materials. Polym Electrolytes Fundam Appl. https://doi.org/10.1533/9781845699772.1.3

    Article  Google Scholar 

  4. Di Noto V, Lavina S, Giffin GA et al (2011) Polymer electrolytes: present, past and future. Electrochim Acta 57:4–13. https://doi.org/10.1016/j.electacta.2011.08.048

    Article  CAS  Google Scholar 

  5. Blumberg AA, Pollack SS, Hoeve CAJ (1964) A poly(ethylene oxide)–mercuric chloride complex. J Polym Sci Part A Gen Pap 2:2499–2502. https://doi.org/10.1002/pol.1964.100020601

    Article  Google Scholar 

  6. Moacanin J, Cuddihy EF (2007) Effect of polar forces on the viscoelastic properties of poly(propylene oxide). J Polym Sci Part C Polym Symp 14:313–322. https://doi.org/10.1002/polc.5070140124

    Article  Google Scholar 

  7. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science (80- ) 334:928–935. https://doi.org/10.1126/science.1212741

  8. Sequeira CAC, Santos DMF (2010) Polymer electrolytes: fundamentals and applications. Polym Electrolytes Fundam Appl. https://doi.org/10.1533/9781845699772

    Article  Google Scholar 

  9. Armand M (1983) Polymer solid electrolytes–an overview. Solid State Ionics 9–10:745–754. https://doi.org/10.1016/0167-2738(83)90083-8

    Article  Google Scholar 

  10. Wright PV (1989) Recent trends in polymer electrolytes based on polyethylene oxide). J Macromol Sci Part A–Chem 26:519–550. https://doi.org/10.1080/00222338908051991

    Article  Google Scholar 

  11. Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319. https://doi.org/10.1016/0167-2738(94)90419-7

    Article  CAS  Google Scholar 

  12. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer (Guildf) 14:589. https://doi.org/10.1016/0032-3861(73)90146-8

    Article  CAS  Google Scholar 

  13. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7:319–327. https://doi.org/10.1002/pi.4980070505

    Article  CAS  Google Scholar 

  14. Gray F, Armand M (2011) Polymer Electrolytes. Handb Batter Mater Second Ed. https://doi.org/10.1002/9783527637188.ch18

    Article  Google Scholar 

  15. Venkatasetty H V. (2000) Lithium-polymer electrolyte rechargeable batteries. Proc Annu Batter Conf Appl Adv 2000-Janua:109–114. https://doi.org/10.1109/BCAA.2000.838389

  16. David Linden TB (2002) Handbook of Batteries, 3rd edn. McGraw-Hill

    Google Scholar 

  17. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  18. O’Heir J (2017) Building better batteries. Mech Eng 139:10–11

    Google Scholar 

  19. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4:10038–10039. https://doi.org/10.1039/c6ta02621d

    Article  CAS  Google Scholar 

  20. Wright PV (1998) Polymer electrolytes–the early days. Electrochim Acta 43:1137–1143. https://doi.org/10.1016/S0013-4686(97)10011-1

    Article  CAS  Google Scholar 

  21. Meyer WH (1998) Polymer electrolytes for Lithium ion batteries. Adv Mater 10:439–448

    Article  CAS  Google Scholar 

  22. Warner JT (2019) Lithium-Ion Battery Chemistries A Primer. Elsevier

    Google Scholar 

  23. H T (2000) portable Li-ion worldwide. Conf Proc power

  24. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

  25. R.K A r. and G, 1999 Superionic solid composite electrolyte phase - An overview J Mater Sci 34:1131–1162

  26. Appetecchi GB, Scrosati B (1998) Lithium ion polymer battery. Electrochim Acta 43:1105–1107. https://doi.org/10.1016/S0013-4686(97)10117-7

    Article  CAS  Google Scholar 

  27. Kim JY, Kim SH (1999) Ionic conduction behavior of network polymer electrolytes based on phosphate and polyether copolymers. Solid State Ionics 124:91–99. https://doi.org/10.1016/S0167-2738(99)00104-6

    Article  CAS  Google Scholar 

  28. Kang Xu (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteriesno title. Chem Rev 104:4303–4417

    Article  Google Scholar 

  29. Winter M, Besenhard JO, SpahrA ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  CAS  Google Scholar 

  30. Kasnatscheew J, Wagner R, Winter M, Cekic-Laskovic I (2018) Interfaces and materials in lithium ion batteries: challenges for theoretical electrochemistry. Top Curr Chem 376:1–29. https://doi.org/10.1007/s41061-018-0196-1

    Article  CAS  Google Scholar 

  31. Fong R, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009–2013. https://doi.org/10.1149/1.2086855

    Article  CAS  Google Scholar 

  32. Kasnatscheew J, Placke T, Streipert B et al (2017) A tutorial into practical capacity and mass balancing of lithium ion batteries. J Electrochem Soc 164:A2479–A2486. https://doi.org/10.1149/2.0961712jes

    Article  CAS  Google Scholar 

  33. Chawla N, Bharti N, Singh S (2019) Recent advances in non-flammable electrolytes for safer lithium-ion batteries. Batteries 5(1):19. https://doi.org/10.3390/batteries501001

  34. Wang WM (2012) Study on all solid-state composite polymer electrolyte. Adv Mater Res 571:13–16. https://doi.org/10.4028/www.scientific.net/AMR.571.13

    Article  CAS  Google Scholar 

  35. Vincent CA (1994) Applications of electroactive polymers. Edited by B. Scrosati. Chapman and Hall, London, 1993. pp. 354 price £40.00. ISBN 0–412–41430–9. Polym Int 33:343–343. https://doi.org/10.1002/pi.1994.210330323

  36. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295. https://doi.org/10.1039/c1ee01388b

    Article  CAS  Google Scholar 

  37. Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1:1–4. https://doi.org/10.1038/nenergy.2016.141

    Article  Google Scholar 

  38. Mark A. Ratner, Patrik Johansson and, Duward F. Shriver (2000) Polymer Electrolytes: Ionic Transport Mechanisms and Relaxation Coupling. Mrs Bull 31–37

  39. Ye L, Feng Z (2010) Polymer electrolytes as solid solvents and their applications. Polym Electrolytes Fundam Appl. https://doi.org/10.1533/9781845699772.2.550

    Article  Google Scholar 

  40. Randau S, Weber DA, Kötz O et al (2020) Benchmarking the performance of all-solid-state lithium batteries. Nat Energy 5:259–270. https://doi.org/10.1038/s41560-020-0565-1

    Article  CAS  Google Scholar 

  41. Homann G, Stolz L, Neuhaus K et al (2020) Effective optimization of high voltage solid-state lithium batteries by using poly(ethylene oxide)-based polymer electrolyte with semi-interpenetrating network. Adv Funct Mater 30:1–8. https://doi.org/10.1002/adfm.202006289

    Article  CAS  Google Scholar 

  42. Mauger A, Julien CM, Paolella A et al (2019) Building better batteries in the solid state: a review. Materials (Basel) 12:1–86. https://doi.org/10.3390/ma122333892

    Article  Google Scholar 

  43. Lr G (1993) Appliction of electroactive polymers. First. Chapman & Hall, London

    Google Scholar 

  44. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540. https://doi.org/10.1039/c0cs00081g

    Article  CAS  Google Scholar 

  45. Farrington GC, Briant JL (1979) Fast Ionic Transport in Solids Authors ( s ): Gregory C . Farrington and Jacqueline L . Briant Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/1748409 Accessed : 27–03–2016 08 : 22 UTC. Science (80- ) 204:1371–1379

  46. Pandey GP, Hashmi SA, Agrawal RC (2008) Experimental investigations on a proton conducting nanocomposite polymer electrolyte. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/41/5/055409

    Article  Google Scholar 

  47. Zhang Q, Liu K, Ding F, Liu X (2017) Recent advances in solid polymer electrolytes for lithium batteries. Nano Res 10:4139–4174. https://doi.org/10.1007/s12274-017-1763-4

    Article  Google Scholar 

  48. Killis A, LeNest J-F, Cheradame H, Gandini A (1982) Ionic conductivity of polyether-polyurethane networks containing NaBPh4: a free volume analysis. Die Makromol Chemie 183:2835–2845. https://doi.org/10.1002/macp.1982.021831118

    Article  CAS  Google Scholar 

  49. Weston JE, Steele BCH (1982) Effects of preparation method on properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7:81–88. https://doi.org/10.1016/0167-2738(82)90073-X

    Article  CAS  Google Scholar 

  50. Leveque M, Le Nest JF, Gandini A, Cheradame H (1985) Cationic transport numbers in polyether-based networks containing lithium salts. J Power Sources 14:27–30. https://doi.org/10.1016/0378-7753(85)88006-X

    Article  CAS  Google Scholar 

  51. Bouridah A, Dalard F, Deroo D, Armand MB (1986) Potentiometric measurements of ionic mobilities in poly(ethyleneoxide) electrolytes. Solid State Ionics 18–19:287–290. https://doi.org/10.1016/0167-2738(86)90128-1

    Article  Google Scholar 

  52. W GoreckiR AndreaniC. BerthierM. ArmandM. MaliJ. RoosD. Brinkmann 1986 NMR, DSC and conductivity study of poly(ethylene oxide) complex electrolyte: PEO (LiClO4)X Solid State Ionics 18 295 299

  53. Zugmann S, Fleischmann M, Amereller M et al (2011) Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim Acta 56:3926–3933. https://doi.org/10.1016/j.electacta.2011.02.025

    Article  CAS  Google Scholar 

  54. Fauteux D, Boisvert Y, Robitaille CD, Lupien MD (1985) Phase Diagram, Conductivity and Transference Number of Poly(Ethylene Oxide) Base Electrolytes. Electrochem Soc Ext Abstr 85–2:189

    Google Scholar 

  55. Zhou X, Li X, Li Z et al (2021) Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability. J Mater Chem A 9:18239–18246. https://doi.org/10.1039/d1ta04631d

    Article  CAS  Google Scholar 

  56. Devaux D, Leduc H, Dumaz P et al (2020) Effect of electrode and electrolyte thicknesses on all-solid-state battery performance analyzed with the sand equation. Front Energy Res. https://doi.org/10.3389/fenrg.2019.00168

    Article  Google Scholar 

  57. Ehrl A, Landesfeind J, Wall WA, Gasteiger HA (2017) Determination of transport parameters in liquid binary electrolytes: part II. Transf Number J Electrochem Soc 164:A2716–A2731. https://doi.org/10.1149/2.1681712jes

    Article  CAS  Google Scholar 

  58. Stolz L, Homann G, Winter M, Kasnatscheew J (2021) The Sand equation and its enormous practical relevance for solid-state lithium metal batteries. Mater Today 44:9–14. https://doi.org/10.1016/j.mattod.2020.11.025

    Article  CAS  Google Scholar 

  59. Stolz L, Homann G, Winter M, Kasnatscheew J (2021) Kinetical threshold limits in solid-state lithium batteries: data on practical relevance of sand equation. Data Br 34:106688. https://doi.org/10.1016/j.dib.2020.106688

    Article  CAS  Google Scholar 

  60. Homann G, Stolz L, Nair J et al (2020) Poly(Ethylene Oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Sci Rep 10:2–10. https://doi.org/10.1038/s41598-020-61373-9

    Article  CAS  Google Scholar 

  61. Stolz L, Röser S, Homann G et al (2021) Pragmatic approaches to correlate between the physicochemical properties of a linear poly(ethylene oxide)-based solid polymer electrolyte and the performance in a high-voltage li-metal battery. J Phys Chem C 125:18089–18097. https://doi.org/10.1021/acs.jpcc.1c03614

    Article  CAS  Google Scholar 

  62. Méry A, Rousselot S, Lepage D, Dollé M (2021) A Critical Review for an Accurate Electrochemical Stability Composite Electrolytes. Materials (Basel)

  63. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42. https://doi.org/10.1016/j.eurpolymj.2005.09.017

    Article  CAS  Google Scholar 

  64. Saikia D, Chen-Yang Y, Chen Y, Li SIL Y (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32

    Article  CAS  Google Scholar 

  65. Cheng X, Pan J, Zhao Y et al (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1–16. https://doi.org/10.1002/aenm.201702184

    Article  CAS  Google Scholar 

  66. Wang Y, Zhong WH (2015) Development of electrolytes towards achieving safe and high-performance energy-storage devices: A review. ChemElectroChem 2:22–36. https://doi.org/10.1002/celc.201402277

    Article  CAS  Google Scholar 

  67. Zhou D, He YB, Cai Q et al (2014) Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode-electrolyte interfacial fabrication in lithium-ion battery. J Mater Chem A 2:20059–20066. https://doi.org/10.1039/c4ta04504a

    Article  CAS  Google Scholar 

  68. Zhou D, Shanmukaraj D, Tkacheva A et al (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5:2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  69. Hoang Huy VP, So S, Hur J (2021) Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries. Nanomaterials 11(3):614. https://doi.org/10.3390/nano11030614 . Open access Journal

  70. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics (Kiel) 22:1259–1279. https://doi.org/10.1007/s11581-016-1756-4

    Article  CAS  Google Scholar 

  71. Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, ... & Liu X (2019) Review on polymer-based composite electrolytes for lithium batteries. Front Chem 7:522

  72. Florjańczyk Z, Marcinek M, Wieczorek W, Langwald N (2004) Review of PEO based composite polymer electrolytes. Pol J Chem 78:1279–1304

    Google Scholar 

  73. Abraham KM (1993) Directions in secondary lithium battery research and development. Electrochim Acta 38:1233–1248

    Article  CAS  Google Scholar 

  74. Bruce PG (1995) Structure and electrochemistry of polymer electrolytes. Electrochim Acta 40:2077–2085. https://doi.org/10.1016/0013-4686(95)00144-4

    Article  CAS  Google Scholar 

  75. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523. https://doi.org/10.1038/35087538

    Article  CAS  Google Scholar 

  76. Lightfoot P, Mehta MA, Bruce PG (1993) Crystal Structure of the Polymer Electrolyte Poly ( ethylene oxide ) $ _ 3 $ : LiCF $ _ 3 $ SO $ _ 3 $ Author ( s ): P . Lightfoot , M . A . Mehta and P . G . Bruce Published by : American Association for the Advancement of Science Stable URL : https://www.Science (80- ) 262:883–885

  77. Croce F, Curini R, Martinelli A et al (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638. https://doi.org/10.1021/jp992307u

    Article  CAS  Google Scholar 

  78. Pedersen CJ (1978) Synthetic multidentate macrocyclic compounds. ACADEMIC PRESS, INC.

  79. Deng F, Wang X, He D et al (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Memb Sci 491:82–89. https://doi.org/10.1016/j.memsci.2015.05.021

    Article  CAS  Google Scholar 

  80. Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329. https://doi.org/10.1016/j.jiec.2015.07.005

    Article  CAS  Google Scholar 

  81. H. Aydın AB, (2012) Synthesis, characterization, and ionic conductivity of novel crosslinked polymer electrolytes for Li-ion batteries. J Appl Polym Sci 124:1193–1199

    Article  Google Scholar 

  82. YL, Ni’Mah , Cheng MY, Cheng JH, et al (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381. https://doi.org/10.1016/j.jpowsour.2014.11.047

    Article  CAS  Google Scholar 

  83. Rolland J, Brassinne J, Bourgeois JP et al (2014) Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries. J Mater Chem A 2:11839–11846. https://doi.org/10.1039/c4ta02327g

    Article  CAS  Google Scholar 

  84. Ito Y, Kanehori K, Miyauchi K, Kudo T (1987) Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol). J Mater Sci 22:1845–1849. https://doi.org/10.1007/BF01132415

    Article  CAS  Google Scholar 

  85. Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrogen Energy 42:7212–7219. https://doi.org/10.1016/j.ijhydene.2016.04.160

    Article  CAS  Google Scholar 

  86. Zhu L, Zhu P, Fang Q et al (2018) A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim Acta 292:718–726. https://doi.org/10.1016/j.electacta.2018.10.005

    Article  CAS  Google Scholar 

  87. Zhu P, Yan C, Dirican M et al (2018) Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A 6:4279–4285. https://doi.org/10.1039/c7ta10517g

    Article  CAS  Google Scholar 

  88. Chen F, Yang D, Zha W et al (2017) Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim Acta 258:1106–1114. https://doi.org/10.1016/j.electacta.2017.11.164

    Article  CAS  Google Scholar 

  89. Wang Q, Liu X, Cui Z et al (2020) A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries. Electrochim Acta 337:135843. https://doi.org/10.1016/j.electacta.2020.135843

    Article  CAS  Google Scholar 

  90. Alamgir M, Abraham KM (1993) Li Ion Conductive Electrolytes Based on Poly(vinyl chloride). J Electrochem Soc 140:L96–L97. https://doi.org/10.1149/1.2221654

    Article  CAS  Google Scholar 

  91. Tsutsumi H, Doi S, Onimura K, Oishi T (2002) Conductivity enhancement of poly(vinylimidazoline)-based electrolytes by addition of cascade nitrile. Electrochemistry 70:94–98. https://doi.org/10.5796/electrochemistry.70.94

    Article  CAS  Google Scholar 

  92. Gopalan AI, Santhosh P, Manesh KM et al (2008) Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J Memb Sci 325:683–690. https://doi.org/10.1016/j.memsci.2008.08.047

    Article  CAS  Google Scholar 

  93. Watanabe M, Kanba M, Nagaoka K, Shinohara I (1982) Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. J Appl Polym Sci 27:4191–4198. https://doi.org/10.1002/app.1982.070271110

    Article  CAS  Google Scholar 

  94. Watanabe M, Kanba M, Nagaoka K, Shinohara I (1983) ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClo4. J Polym Sci Part A-2 Polym Phys 21:939–948. https://doi.org/10.1002/pol.1983.180210610

    Article  CAS  Google Scholar 

  95. Appetecchi GB, Croce F, Romagnoli P et al (1999) High-performance gel-type lithium electrolyte membranes. Electrochem commun 1:83–86. https://doi.org/10.1016/S1388-2481(99)00011-9

    Article  CAS  Google Scholar 

  96. Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997. https://doi.org/10.1016/0013-4686(94)00345-2

    Article  CAS  Google Scholar 

  97. Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochim Acta 45:1371–1374. https://doi.org/10.1016/S0013-4686(99)00345-X

    Article  CAS  Google Scholar 

  98. Zhang X, Xu BQ, Lin YH et al (2018) Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ionics 327:32–38. https://doi.org/10.1016/j.ssi.2018.10.023

    Article  CAS  Google Scholar 

  99. Wang Q, Zhang H, Cui Z et al (2019) Siloxane-based polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 23:466–490. https://doi.org/10.1016/j.ensm.2019.04.016

    Article  Google Scholar 

  100. Nam-Soon C, Jung-Ki P (2001) New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochim Acta 46:1453–1459

    Article  Google Scholar 

  101. Rajendran S, Mahendran O, Kannan R (2002) Ionic conductivity studies in composite solid polymer electrolytes based on methylmethacrylate. J Phys Chem Solids 63:303–307. https://doi.org/10.1016/S0022-3697(01)00144-5

    Article  CAS  Google Scholar 

  102. IIJIMA TAKASHI, TOYOGUCHI YOSHINORI EN, 1985 Quasi-solid organic electrolytes gelatinized with polymethylmethacrylate and their applications for lithium batteries Denki Kagaku 53 619 623

  103. Bohnke O, Frand G, Rezrazi M et al (1993) Fast ion transport in new lithium electrolytes gelled with PMMA. 2. Influence of lithium salt concentration. Solid State Ionics 66:105–112. https://doi.org/10.1016/0167-2738(93)90033-Y

    Article  CAS  Google Scholar 

  104. Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochim Acta 42:1571–1579. https://doi.org/10.1016/S0013-4686(96)00318-0

    Article  CAS  Google Scholar 

  105. Ramesh S, Liew CW (2013) Dielectric and FTIR studies on blending of [xPMMA-(1–X)PVC] with LiTFSI. Meas J Int Meas Confed 46:1650–1656. https://doi.org/10.1016/j.measurement.2013.01.003

    Article  Google Scholar 

  106. Ramesh S, Lu SC (2008) Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluoromethanesulfonyl)imide based polymer electrolytes. J Power Sources 185:1439–1443. https://doi.org/10.1016/j.jpowsour.2008.07.055

    Article  CAS  Google Scholar 

  107. Liu LL, Li ZH, Xia QL et al (2012) Electrochemical study of P(VDF-HFP)/PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics (Kiel) 18:275–281. https://doi.org/10.1007/s11581-011-0632-5

    Article  CAS  Google Scholar 

  108. Sun J, Li Y, Zhang Q, et al (2019) A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem Eng J 375:121922. https://doi.org/10.1016/j.cej.2019.121922

  109. Liu B, Huang Y, Zhao L et al (2018) A novel non-woven fabric supported gel polymer electrolyte based on poly(methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries. J Memb Sci 564:62–72. https://doi.org/10.1016/j.memsci.2018.07.014

    Article  CAS  Google Scholar 

  110. Sivaraj P, Abhilash KP, Nalini B et al (2020) Performance enhancement of PVDF/LiCIO4 based nanocomposite solid polymer electrolytes via incorporation of Li0.5La0.5TiO3 nano filler for all-solid-state batteries. Macromol Res 28:739–750. https://doi.org/10.1007/s13233-020-8096-y

    Article  CAS  Google Scholar 

  111. Wang F, Li L, Yang X et al (2018) Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain Energy Fuels 2:492–498. https://doi.org/10.1039/c7se00441a

    Article  CAS  Google Scholar 

  112. Watanabe M, Kanba M, Matsuda H, Tsunemi K, Mizoguchi K, Eishun Tsuchida IS (1981) High lithium ionic conductivity of polymeric solid electrolytes. Macromol Rapid Commun 2:741–744

    Article  CAS  Google Scholar 

  113. Tsuchida E, Ohno H, Tsunemi K (1983) Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I. Electrochim Acta 28:591–595. https://doi.org/10.1016/0013-4686(83)85049-X

    Article  CAS  Google Scholar 

  114. Choe HS, Giaccai J, Alamgir M, Abraham KM (1995) Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes. Electrochim Acta 40:2289–2293. https://doi.org/10.1016/0013-4686(95)00180-M

    Article  CAS  Google Scholar 

  115. Janakiraman, S. Abhijith Surendran SG, S. Anandhan, Venimadhav A (2018) A new strategy of PVDF based Li-salt polymer electrolyte through electrospinning for lithium battery application. Mater Res express 6:035303

  116. Xie M, Li L, Zhang Y et al (2020) Mastering high ion conducting of room-temperature all-solid-state lithium-ion batteries via safe phthaloyl starch-poly(vinylidene fluoride)–based polymer electrolyte. Ionics (Kiel) 26:1109–1117. https://doi.org/10.1007/s11581-019-03309-6

    Article  CAS  Google Scholar 

  117. Bose P, Deb D, Bhattacharya S (2019) Lithium-polymer battery with ionic liquid tethered nanoparticles incorporated P(VDF-HFP) nanocomposite gel polymer electrolyte. Electrochim Acta 319:753–765. https://doi.org/10.1016/j.electacta.2019.07.013

    Article  CAS  Google Scholar 

  118. Jia W, Li Z, Wu Z et al (2018) Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics 315:7–13. https://doi.org/10.1016/j.ssi.2017.11.026

    Article  CAS  Google Scholar 

  119. Ramesh S, Soon-Chien L (2012) Enhancement of ionic conductivity and structural properties by 1-Butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in poly(vinylidene fluoride–hexafluoropropylene)-based polymer electrolytes. Appl Polym Sci 126:484–492

    Article  Google Scholar 

  120. Kim KM, Ryu KS, Kang S-G et al (2001) The effect of silica addition on the properties of poly((vinylidene fluoride)-co-hexafluoropropylene)-based polymer electrolytes. Macromol Chem Phys 202:866–872. https://doi.org/10.1002/1521-3935(20010301)202:6%3c866::aid-macp866%3e3.3.co;2-3

    Article  CAS  Google Scholar 

  121. Costa CM, Silva MM, Lanceros-Méndez S (2013) Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv 3:11404–11417. https://doi.org/10.1039/c3ra40732b

    Article  CAS  Google Scholar 

  122. Abraham KM, Jiang Z, Carroll B (1997) Highly Conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988. https://doi.org/10.1021/cm970075a

    Article  CAS  Google Scholar 

  123. Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF-(PC + DEC)-LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589. https://doi.org/10.1016/j.electacta.2004.01.029

    Article  CAS  Google Scholar 

  124. Gonçalves R, Miranda D, Almeida AM et al (2019) Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries. Sustain Mater Technol 21:1–31. https://doi.org/10.1016/j.susmat.2019.e00104

    Article  CAS  Google Scholar 

  125. Liang YF, Deng SJ, Xia Y et al (2018) A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Mater Res Bull 102:412–417. https://doi.org/10.1016/j.materresbull.2018.02.051

    Article  CAS  Google Scholar 

  126. Ramesh S, Yin TS, Liew CW (2011) Effect of dibutyl phthalate as plasticizer on high-molecular weight poly(vinyl chloride)-lithium tetraborate-based solid polymer electrolytes. Ionics (Kiel) 17:705–713. https://doi.org/10.1007/s11581-011-0568-9

    Article  CAS  Google Scholar 

  127. Sukeshini AM, Nishimoto A, Watanabe M (1996) Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes. Solid State Ionics 86–88:385–393. https://doi.org/10.1016/0167-2738(96)00156-7

    Article  Google Scholar 

  128. Manuel Stephan A, Thirunakaran R, Renganathan NG et al (1999) A study on polymer blend electrolyte based on PVC/PMMA with lithium salt. J Power Sources 81–82:752–758. https://doi.org/10.1016/s0378-7753(99)00148-2

    Article  Google Scholar 

  129. Stephan AM, Renganathan NG, Kumar TP et al (2000) Ionic conductivity studies on plasticized PVC/PMMA blend polymer electrolyte containing LiBF4 and LiCF3SO3. Solid State Ionics 130:123–132. https://doi.org/10.1016/S0167-2738(00)00440-9

    Article  CAS  Google Scholar 

  130. Stephan AM, Kumar TP, Renganathan NG et al (2000) Ionic conductivity and FT-IR studies on plasticized PVC/PMMA blend polymer electrolytes. J Power Sources 89:80–87. https://doi.org/10.1016/S0378-7753(00)00379-7

    Article  CAS  Google Scholar 

  131. Sung H, Wang Y, Wan C (1998) Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-Ion batteries. J Electrochem Soc 145:1207–1211. https://doi.org/10.1149/1.1838440

    Article  CAS  Google Scholar 

  132. Jagadeesan A, Sasikumar M, Jeevani R et al (2019) Fabrication of BaTiO3 ceramic filler incorporated PVC-PEMA based blend nanocomposite gel polymer electrolytes for Li ion battery applications. J Mater Sci Mater Electron 30:17181–17194. https://doi.org/10.1007/s10854-019-02065-7

    Article  CAS  Google Scholar 

  133. A Jagadeesan, M Sasikumar, R Hari Krishna, N Raja, D Gopalakrishna SV and PS (2019) High electrochemical performance of nano TiO2 ceramic filler incorporated PVC-PEMA composite gel polymer electrolyte for Li-ion battery applications. Mater Res express 6:105524

  134. Dasenbrock CO, Ridgway TH, Seliskar CJ, Heineman WR (1998) Evaluation of the electrochemical characteristics of a poly(vinyl alcohol)/poly(acrylic acid) polymer blend. Electrochim Acta 43:3497–3502. https://doi.org/10.1016/S0013-4686(98)00097-8

    Article  CAS  Google Scholar 

  135. Jen MY, Hung ZW, Chun CY (2008) Modification and characterization of semi-crystalline poly(vinyl alcohol) with interpenetrating poly(acrylic acid) by UV radiation method for alkaline solid polymer electrolytes membrane. J Memb Sci 322:74–80. https://doi.org/10.1016/j.memsci.2008.05.035

    Article  CAS  Google Scholar 

  136. Yang CC, Wu GM (2009) Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors. Mater Chem Phys 114:948–955. https://doi.org/10.1016/j.matchemphys.2008.11.009

    Article  CAS  Google Scholar 

  137. Lu Y, Wang D, Li T et al (2009) Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. Biomaterials 30:4143–4151. https://doi.org/10.1016/j.biomaterials.2009.04.030

    Article  CAS  Google Scholar 

  138. Qiao J, Okada T, Ono H (2009) High molecular weight PVA-modified PVA/PAMPS proton-conducting membranes with increased stability and their application in DMFCs. Solid State Ionics 180:1318–1323. https://doi.org/10.1016/j.ssi.2009.08.010

    Article  CAS  Google Scholar 

  139. Guzman-Puyol S, Ceseracciu L, Heredia-Guerrero JA et al (2015) Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol-cellulose composites. Chem Eng J 277:242–251. https://doi.org/10.1016/j.cej.2015.04.092

    Article  CAS  Google Scholar 

  140. Hirankumar G, Selvasekarapandian S, Kuwata N et al (2005) Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes. J Power Sources 144:262–267. https://doi.org/10.1016/j.jpowsour.2004.12.019

    Article  CAS  Google Scholar 

  141. Vargas MA, Vargas RA, Mellander BE (1999) New proton conducting membranes based on PVAL/H3PO2/H2O. Electrochim Acta 44:4227–4232. https://doi.org/10.1016/S0013-4686(99)00137-1

    Article  CAS  Google Scholar 

  142. Vargas RA, Zapata VH, Matallana E, Vargas MA (2001) More thermal studies on the PVOH/H3PO2/H2O solid proton conductor gels. Electrochim Acta 46:1699–1702. https://doi.org/10.1016/S0013-4686(00)00773-8

    Article  CAS  Google Scholar 

  143. Vargas MA, Vargas RA, Mellander BE (2000) Phase behavior of a PVAL-based polymer proton conductor. Phys Status Solidi Basic Res 220:615–624. https://doi.org/10.1002/1521-3951(200007)220:1%3c615::AID-PSSB615%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  144. Vargas MA, Vargas RA, Mallander BE (2000) More studies on the PVA1 + H3PO2 + H2O proton conductor gels. Electrochim Acta 45:1399–1403. https://doi.org/10.1016/S0013-4686(99)00350-3

    Article  CAS  Google Scholar 

  145. Rangasamy VS, Thayumanasundaram S, Locquet JP (2019) Solid polymer electrolytes with poly(vinyl alcohol) and piperidinium based ionic liquid for Li-ion batteries. Solid State Ionics 333:76–82. https://doi.org/10.1016/j.ssi.2019.01.024

    Article  CAS  Google Scholar 

  146. Wang J, Zhao Z, Song S et al (2018) High performance poly(vinyl alcohol)-based Li-ion conducting gel polymer electrolyte films for electric double-layer capacitors. Polymers (Basel). https://doi.org/10.3390/polym10111179

    Article  Google Scholar 

  147. Sasikumar M, Raja M, Krishna RH et al (2018) Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P(VDF-HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries. J Phys Chem C 122:25741–25752. https://doi.org/10.1021/acs.jpcc.8b03952

    Article  CAS  Google Scholar 

  148. Hema M, Tamilselvi P (2016) Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J Phys Chem Solids 96–97:42–48. https://doi.org/10.1016/j.jpcs.2016.04.008

    Article  CAS  Google Scholar 

  149. Francis KMG, Subramanian S, Shunmugavel K et al (2016) Lithium ion-conducting blend polymer electrolyte based on PVA–PAN doped with lithium nitrate. Polym–Plast Technol Eng 55:25–35. https://doi.org/10.1080/03602559.2015.1050523

    Article  CAS  Google Scholar 

  150. Pareek K, Ghosh A, Sen SK, Banerjee S (2010) Synthesis, characterization and properties of new fluorinated poly(imide siloxane) co-polymers from 4,4′-(hexafluoro-isopropylidene)diphthalic anhydride. Des Monomers Polym 13:221–236. https://doi.org/10.1163/138577210X12634696333550

    Article  CAS  Google Scholar 

  151. Zhang ZC, Jin JJ, Bautista F et al (2004) Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes. Solid State Ionics 170:233–238. https://doi.org/10.1016/j.ssi.2004.04.007

    Article  CAS  Google Scholar 

  152. Liu M, Jin B, Zhang Q et al (2018) High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane. J Alloys Compd 742:619–628. https://doi.org/10.1016/j.jallcom.2018.01.263

    Article  CAS  Google Scholar 

  153. Ratner. B.D, Hoffman A.S, Schoen F.J LJ. (2004) Biomaterials science: An introduction to materials in medicine. Elsevier

  154. Walkowiak M, Schroeder G, Gierczyk B et al (2007) New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers. Electrochem commun 9:1558–1562. https://doi.org/10.1016/j.elecom.2007.02.019

    Article  CAS  Google Scholar 

  155. Megahed S, Bruno S (1994) Lithium-ion rechargeable batteries. J Power Sources 51:79–104

    Article  CAS  Google Scholar 

  156. Deka JR, Saikia D, Lou GW et al (2019) Design, synthesis and characterization of polysiloxane and polyetherdiamine based comb-shaped hybrid solid polymer electrolytes for applications in electrochemical devices. Mater Res Bull 109:72–81. https://doi.org/10.1016/j.materresbull.2018.09.003

    Article  CAS  Google Scholar 

  157. Feng J, Zhuo RX, Zhang XZ (2012) Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci 37:211–236. https://doi.org/10.1016/j.progpolymsci.2011.07.008

    Article  CAS  Google Scholar 

  158. Suriano F, Coulembier O, Hedrick JL, Dubois P (2011) Functionalized cyclic carbonates: from synthesis and metal-free catalyzed ring-opening polymerization to applications. Polym Chem 2:528–533. https://doi.org/10.1039/c0py00211a

    Article  CAS  Google Scholar 

  159. Zhang X, Fevre M, Jones GO, Waymouth RM (2018) Catalysis as an enabling science for sustainable polymers. Chem Rev 118:839–885. https://doi.org/10.1021/acs.chemrev.7b00329

    Article  CAS  Google Scholar 

  160. Hong M, Chen EYX (2017) Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem 19:3692–3706. https://doi.org/10.1039/c7gc01496a

    Article  CAS  Google Scholar 

  161. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362. https://doi.org/10.1038/nature21001

    Article  CAS  Google Scholar 

  162. Tempelaar S, Mespouille L, Coulembier O et al (2013) Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem Soc Rev 42:1312–1336. https://doi.org/10.1039/c2cs35268k

    Article  CAS  Google Scholar 

  163. Pratt RC, Nederberg F, Waymouth RM, Hedrick JL (2008) Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth)acrylate for ring-opening polymerization. Chem Commun 2:114–116. https://doi.org/10.1039/b713925j

    Article  CAS  Google Scholar 

  164. Mindemark J, Bowden T (2010) Efficient DNA binding and condensation using low molecular weight, low charge density cationic polymer amphiphiles. Macromol Rapid Commun 31:1378–1382. https://doi.org/10.1002/marc.201000141

    Article  CAS  Google Scholar 

  165. Mindemark J, Bowden T (2011) Synthesis and polymerization of alkyl halide-functional cyclic carbonates. Polymer (Guildf) 52:5716–5722. https://doi.org/10.1016/j.polymer.2011.10.027

    Article  CAS  Google Scholar 

  166. Mindemark J, Bowden T (2012) Diversity in cyclic carbonates: synthesis of triazole-functional monomers using click chemistry. Polym Chem 3:1399–1401. https://doi.org/10.1039/c2py20152f

    Article  CAS  Google Scholar 

  167. Sugimoto H, Inoue S (2004) Copolymerization of carbon dioxide and epoxide. J Polym Sci Part A Polym Chem 42:5561–5573. https://doi.org/10.1002/pola.20319

    Article  CAS  Google Scholar 

  168. Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41:1462–1484. https://doi.org/10.1039/c1cs15142h

    Article  CAS  Google Scholar 

  169. Sun B, Mindemark J, Edström K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262:738–742. https://doi.org/10.1016/j.ssi.2013.08.014

    Article  CAS  Google Scholar 

  170. Zhang J, Zang X, Wen H et al (2017) High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 5:4940–4948. https://doi.org/10.1039/c6ta10066j

    Article  CAS  Google Scholar 

  171. Zhao J, Zhang J, Hu P et al (2016) A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 v high voltage lithium batteries. Electrochim Acta 188:23–30. https://doi.org/10.1016/j.electacta.2015.11.088

    Article  CAS  Google Scholar 

  172. Zhan X, Zhang J, Liu M et al (2019) Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid. ACS Appl Energy Mater 2:1685–1694. https://doi.org/10.1021/acsaem.8b01733

    Article  CAS  Google Scholar 

  173. Chai J, Liu Z, Ma J et al (2017) In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv Sci 4:1–9. https://doi.org/10.1002/advs.201600377

    Article  CAS  Google Scholar 

  174. Mindemark J, Sun B, Törmä E, Brandell D (2015) High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources 298:166–170. https://doi.org/10.1016/j.jpowsour.2015.08.035

    Article  CAS  Google Scholar 

  175. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2%3c89::AID-PI86%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  176. Coombes AGA, Rizzi SC, Williamson M et al (2004) Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25:315–325. https://doi.org/10.1016/S0142-9612(03)00535-0

    Article  CAS  Google Scholar 

  177. Ramesh S, Uma O, Shanti R et al (2014) Preparation and characterization of poly (ethyl methacrylate) based polymer electrolytes doped with 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Meas J Int Meas Confed 48:263–273. https://doi.org/10.1016/j.measurement.2013.11.025

    Article  Google Scholar 

  178. Kam W, Liew CW, Lim JY, Ramesh S (2014) Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes. Ionics (Kiel) 20:665–674. https://doi.org/10.1007/s11581-013-1012-0

    Article  CAS  Google Scholar 

  179. Mauger A, Julien CM, Paolella A et al (2018) A comprehensive review of lithium salts and beyond for rechargeable batteries: progress and perspectives. Mater Sci Eng R Reports 134:1–21. https://doi.org/10.1016/j.mser.2018.07.001

    Article  Google Scholar 

  180. Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chem–A Eur J 17:14326–14346. https://doi.org/10.1002/chem.201101486

    Article  CAS  Google Scholar 

  181. Marcinek M, Syzdek J, Marczewski M et al (2015) Electrolytes for Li-ion transport–Review. Solid State Ionics 276:107–126. https://doi.org/10.1016/j.ssi.2015.02.006

    Article  CAS  Google Scholar 

  182. Younesi R, Veith GM, Johansson P, Edström K, Vegge T (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S. Energy Environ Sci 8(7):1905–1922

  183. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  184. Walker CW, Cox JD, Salomon M (1996) Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with Lithium tris(Trifluoromethanesulfonyl)methide. J Electrochem Soc 143:L80–L82. https://doi.org/10.1149/1.1836607

    Article  CAS  Google Scholar 

  185. Kanamura K, Okagawa T, Takeharaichiro Z (1995) Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes. J Power Sources 57:119–123. https://doi.org/10.1016/0378-7753(95)02265-1

    Article  CAS  Google Scholar 

  186. Ue M, Murakami A, Nakamura S (2002) Anodic stability of several anions examined by ab initio molecular orbital and density functional theories. J Electrochem Soc 149:A1572. https://doi.org/10.1149/1.1517579

    Article  CAS  Google Scholar 

  187. Zinigrad E, Larush-Asraf L, Gnanaraj JS et al (2005) On the thermal stability of LiPF6. Thermochim Acta 438:184–191. https://doi.org/10.1016/j.tca.2005.09.006

    Article  CAS  Google Scholar 

  188. Thermal Stability of LiPF 6 Salt and Li-ion Battery Electrolytes Containing LiPF 6 Hui Yang

  189. Stenzel YP, Horsthemke F, Winter M, Nowak S (2019) Chromatographic techniques in the research area of lithium ion batteries: current state-of-the-art. Separations 6:17–23. https://doi.org/10.3390/separations6020026

    Article  CAS  Google Scholar 

  190. Campion CL, Li W, Euler WB et al (2004) Suppression of toxic compounds produced in the decomposition of lithium-ion battery electrolytes. Electrochem Solid-State Lett 7:194–197. https://doi.org/10.1149/1.1738551

    Article  CAS  Google Scholar 

  191. Tasaki K, Kanda K, Nakamura S, Ue M (2003) Decomposition of LiPF[sub 6] and stability of PF[sub 5] in li-ion battery electrolytes. J Electrochem Soc 150:A1628. https://doi.org/10.1149/1.1622406

    Article  CAS  Google Scholar 

  192. Campion CL, Li W, Lucht BL (2005) Thermal decomposition of LiPF[sub 6]-based electrolytes for lithium-ion batteries. J Electrochem Soc 152:A2327. https://doi.org/10.1149/1.2083267

    Article  CAS  Google Scholar 

  193. Gnanaraj JS, Zinigrad E, Asraf L et al (2003) A detailed investigation of the thermal reactions of LiPF[sub 6] solution in organic carbonates using ARC and DSC. J Electrochem Soc 150:A1533. https://doi.org/10.1149/1.1617301

    Article  CAS  Google Scholar 

  194. Heider U, Oesten R, Jungnitz M (1999) Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level. J Power Sources 81–82:119–122. https://doi.org/10.1016/S0378-7753(99)00142-1

    Article  Google Scholar 

  195. Plakhotnyk AV, Ernst L, Schmutzler R (2005) Hydrolysis in the system LiPF 6–propylene carbonate–dimethyl carbonate–H 2O. J Fluor Chem 126:27–31. https://doi.org/10.1016/j.jfluchem.2004.09.027

    Article  CAS  Google Scholar 

  196. Andersson AM, Herstedt M, Bishop AG, Edström K (2002) The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes. Electrochim Acta 47:1885–1898. https://doi.org/10.1016/S0013-4686(02)00044-0

    Article  CAS  Google Scholar 

  197. Zhang SS, Xu K, Jow TR (2002) Study of LiBF[sub 4] as an electrolyte salt for a Li-Ion battery. J Electrochem Soc 149:A586. https://doi.org/10.1149/1.1466857

    Article  CAS  Google Scholar 

  198. Takami N, Ohsaki T, Hasebe H, Yamamoto M (2002) Laminated thin Li-Ion batteries using a liquid electrolyte. J Electrochem Soc 149:A9. https://doi.org/10.1149/1.1420704

    Article  CAS  Google Scholar 

  199. Zhang SS, Xu K, Jow TR (2003) Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J Solid State Electrochem 7:147–151. https://doi.org/10.1007/s10008-002-0300-9

    Article  CAS  Google Scholar 

  200. Ue M, Fujii T, Bin ZZ et al (2006) Electrochemical properties of Li[CnF2n+1BF 3] as electrolyte salts for lithium-ion cells. Solid State Ionics 177:323–331. https://doi.org/10.1016/j.ssi.2005.10.023

    Article  CAS  Google Scholar 

  201. Webber A (1991) Conductivity and viscosity of Solutions of LiCF3 SO 3, Li (CF 3 SO 2) 2 N, and their mixtures. J Electrochem Soc 138:2586–2590. https://doi.org/10.1149/1.2087287

    Article  CAS  Google Scholar 

  202. Aurbach D, Markovsky B, Levi MD et al (1999) New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources 81–82:95–111. https://doi.org/10.1016/S0378-7753(99)00187-1

    Article  Google Scholar 

  203. Arai J, Pe L (1999) Anodic dissolution of aluminium in organic electrolytes containing per ¯ uoroalkylsulfonyl imides. J Appl Electrochem 29:1053–1061

    Article  Google Scholar 

  204. Krause LJ, Lamanna W, Summerfield J et al (1997) Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J Power Sources 68:320–325. https://doi.org/10.1016/S0378-7753(97)02517-2

    Article  CAS  Google Scholar 

  205. Brox S, Röser S, Streipert B et al (2017) Innovative, non-corrosive LiTFSI cyanoester-based electrolyte for safer 4 V lithium-Ion batteries. ChemElectroChem 4:304–309. https://doi.org/10.1002/celc.201600610

    Article  CAS  Google Scholar 

  206. Xu W, Angell AC (2001) LiBOB and Its derivatives. Electrochem Solid-State Lett 4:3–6

    Article  CAS  Google Scholar 

  207. Azeez F, Fedkiw PS (2010) Conductivity of libob-based electrolyte for lithium-ion batteries. J Power Sources 195:7627–7633. https://doi.org/10.1016/j.jpowsour.2010.06.021

    Article  CAS  Google Scholar 

  208. Xue ZM, Bin SB, Zhou W, Chen CH (2011) A new lithium salt with dihydroxybenzene and lithium tetrafluoroborate for lithium battery electrolytes. J Power Sources 196:8710–8713. https://doi.org/10.1016/j.jpowsour.2011.06.060

    Article  CAS  Google Scholar 

  209. Liu Z, Chai J, Xu G et al (2015) Functional lithium borate salts and their potential application in high performance lithium batteries. Coord Chem Rev 292:56–73. https://doi.org/10.1016/j.ccr.2015.02.011

    Article  CAS  Google Scholar 

  210. Zhang X, Devine TM (2006) Passivation of aluminum in lithium-ion battery electrolytes with LiBOB. J Electrochem Soc 153:B365. https://doi.org/10.1149/1.2218269

    Article  CAS  Google Scholar 

  211. Xu K (2008) Tailoring Electrolyte Composition for LiBOB. J Electrochem Soc 155:A733. https://doi.org/10.1149/1.2961055

    Article  CAS  Google Scholar 

  212. Abraham DP, Furczon MM, Kang SH et al (2008) Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. J Power Sources 180:612–620. https://doi.org/10.1016/j.jpowsour.2008.02.047

    Article  CAS  Google Scholar 

  213. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954. https://doi.org/10.1016/j.jpowsour.2009.08.089

    Article  CAS  Google Scholar 

  214. Schmidt M, Heider U, Kuehner A et al (2001) Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources 97–98:557–560. https://doi.org/10.1016/S0378-7753(01)00640-1

    Article  Google Scholar 

  215. Koch VR, Goldman JL, Mattos CJ, Mulvaney M (1982) Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J Electrochem Soc 129:1–4. https://doi.org/10.1149/1.2123756

    Article  CAS  Google Scholar 

  216. Aurbach D, Markovsky B, Shechter A et al (1996) A comparative study of synthetic graphite and li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc 143:3809–3820. https://doi.org/10.1149/1.1837300

    Article  CAS  Google Scholar 

  217. Aurbach D, Ein-Eli Y, Markovsky B et al (1995) The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable li batteries: II. Graphite Electrodes J Electrochem Soc 142:2882–2890. https://doi.org/10.1149/1.2048659

    Article  CAS  Google Scholar 

  218. Yoshimatsu I, Hirai T, Yamaki J (1988) Lithium electrode morphology during cycling in lithium cells. J Electrochem Soc 135:2422–2427. https://doi.org/10.1149/1.2095351

    Article  CAS  Google Scholar 

  219. Plichta E, Slane S, Uchiyama M et al (1989) An improved Li/Li x CoO2 rechargeable Cell. J Electrochem Soc 136:1865–1869. https://doi.org/10.1149/1.2097063

    Article  CAS  Google Scholar 

  220. Bushkova OV, Yaroslavtseva TV, Dobrovolsky YA (2017) New lithium salts in electrolytes for lithium-ion batteries (review). Russ J Electrochem 53:677–699. https://doi.org/10.1134/S1023193517070035

    Article  CAS  Google Scholar 

  221. Nanjundiah C, Goldman JL, Dominey LA, Koch VR (1988) Electrochemical stability of LiMF6 ( M = P, As, Sb ) in tetrahydrofuran and sulfolane. J Electrochem Soc 135:2914–2917. https://doi.org/10.1149/1.2095462

    Article  CAS  Google Scholar 

  222. Chen HP, Fergus JW, Jang BZ (2000) The effect of ethylene carbonate and salt concentration on the conductivity of propylene carbonate∣lithium perchlorate electrolytes. J Electrochem Soc 147:399. https://doi.org/10.1149/1.1393209

    Article  CAS  Google Scholar 

  223. Herr R (1990) Organic electrolytes for lithium cells. Electrochim Acta 35:1257–1265. https://doi.org/10.1016/0013-4686(90)90059-9

    Article  CAS  Google Scholar 

  224. Newman GH, Francis RW, Gaines LH, Rao BML (1980) Hazard investigations of LiClO4/Dioxolane electrolyte. J Electrochem Soc 127:2025–2027. https://doi.org/10.1149/1.2130056

    Article  CAS  Google Scholar 

  225. Jiang G, Maeda S, Yang H et al (2005) All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes. J Power Sources 141:143–148. https://doi.org/10.1016/j.jpowsour.2004.09.004

    Article  CAS  Google Scholar 

  226. Croce F, Persi L, Ronci F, Scrosati B (2000) Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ionics 135:47–52. https://doi.org/10.1016/S0167-2738(00)00329-5

    Article  CAS  Google Scholar 

  227. Jung S, Kim DW, Lee SD et al (2009) Fillers for solid-state polymer electrolytes: highlight. Bull Korean Chem Soc 30:2355–2361. https://doi.org/10.5012/bkcs.2009.30.10.2355

    Article  CAS  Google Scholar 

  228. Scrosati B, Croce F, Panero S (2001) Progress in lithium polymer battery R&D. J Power Sources 100:93–100. https://doi.org/10.1016/S0378-7753(01)00886-2

    Article  CAS  Google Scholar 

  229. Rajendran S, Uma T (2000) Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes. Ionics (Kiel) 6:288–293. https://doi.org/10.1007/BF02374079

    Article  CAS  Google Scholar 

  230. Lakshman Dissanayake MAK (2004) Nano-composite solid polymer electrolytes for solid state ionic devices. Ionics (Kiel) 10:221–225. https://doi.org/10.1007/BF02382820

    Article  Google Scholar 

  231. Krawiec W, Scanlon LG, Fellner JP et al (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315. https://doi.org/10.1016/0378-7753(94)02090-P

    Article  CAS  Google Scholar 

  232. Miao R, Liu B, Zhu Z et al (2008) PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J Power Sources 184:420–426. https://doi.org/10.1016/j.jpowsour.2008.03.045

    Article  CAS  Google Scholar 

  233. Stephan AM, Nahm KS, Anbu Kulandainathan M et al (2006) Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur Polym J 42:1728–1734. https://doi.org/10.1016/j.eurpolymj.2006.02.006

    Article  CAS  Google Scholar 

  234. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540

  235. Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162:685–689. https://doi.org/10.1016/j.jpowsour.2006.07.038

    Article  CAS  Google Scholar 

  236. Yadav GD, Sengupta S (2002) Friedel-Crafts alkylation of diphenyl oxide with benzyl chloride over sulphated zirconia. Org Process Res Dev 6:256–262. https://doi.org/10.1021/op990099y

    Article  CAS  Google Scholar 

  237. Croce F, Settimi L, Scrosati B (2006) Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem commun 8:364–368. https://doi.org/10.1016/j.elecom.2005.12.002

    Article  CAS  Google Scholar 

  238. Occelli ML, Tindwa RM (1983) Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars. Clays Clay Miner 31:22–28. https://doi.org/10.1346/CCMN.1983.0310104

    Article  CAS  Google Scholar 

  239. Appetecchi GB, Passerini S (2000) PEO-carbon composite lithium polymer electrolyte. Electrochim Acta 45:2139–2145. https://doi.org/10.1016/S0013-4686(99)00437-5

    Article  CAS  Google Scholar 

  240. Izadi HGA (2012) Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon N Y 50:4744–4749

    Article  CAS  Google Scholar 

  241. Xi J, Qiu X, Ma X et al (2005) Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 176:1249–1260. https://doi.org/10.1016/j.ssi.2005.02.016

    Article  CAS  Google Scholar 

  242. Xi J, Miao S, Tang X (2004) Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte. Macromolecules 37:8592–8598. https://doi.org/10.1021/ma048849d

    Article  CAS  Google Scholar 

  243. Mishra HK, Parida KM (2002) Studies on sulphated zirconia: Synthesis, physico-chemical characterisation and n-butane isomerisation activity. Appl Catal A Gen 224:179–189. https://doi.org/10.1016/S0926-860X(01)00822-5

    Article  CAS  Google Scholar 

  244. Dudley JT, Wilkinson DP, Thomas G et al (1991) Conductivity of electrolytes for rechargeable lithium batteries. J Power Sources 35:59–82. https://doi.org/10.1016/0378-7753(91)80004-H

    Article  CAS  Google Scholar 

  245. Capuano F, Croce F, Scrosati B (1991) Composite polymer electrolytes. J Electrochem Soc 138:1918–1922. https://doi.org/10.1149/1.2085900

    Article  CAS  Google Scholar 

  246. Linert W, Camard A, Armand M, Michot C (2002) Anions of low Lewis basicity for ionic solid state electrolytes, Linert et al, Coordination chemistry reviews, 2002.pdf. Coord Chem Rev 226:137–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Usha Rani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sashmitha, K., Rani, M.U. A comprehensive review of polymer electrolyte for lithium-ion battery. Polym. Bull. 80, 89–135 (2023). https://doi.org/10.1007/s00289-021-04008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04008-x

Navigation