Skip to main content
Log in

Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The preparation and characterization of PVC-PMMA-LiBF4/LiAsF6-DBP composite polymer electrolytes for different concentrations of ZrO2 have been investigated. FTIR studies indicate complex formation between the polymers, salt and plasticizer. The electrical conductivity values measured by ac impedance spectroscopy were found to depend upon the ZrO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. C.C. Liang, J. Electrochem. Soc.120, 1289 (1973).

    CAS  Google Scholar 

  2. J. Maier, in: Superionic Solids and Solid Electrolytes, (A.L. Lasker and S. Chandra, Eds.) Academic Press, San Diego, 1989, pp. 132.

    Google Scholar 

  3. J.B. Wagner, Jr, in: High Conductivity Solid Ionic Conductors, (T. Takahashi, Ed.) World Scientific, Singapore, 1989, pp. 146.

    Google Scholar 

  4. J.R. MacCallum and C.A. Vincent, Eds., Polymer Electrolyte Reviews, Elsevier, New York, 1987 and 1989, Vols. I and II.

    Google Scholar 

  5. N. Munichandraiah, I.G. Scanlon, R.A. Marsh, B. Kumar and A.K. Sircar, Abstract 32, pp. 49, The Electrochem. Soc. Extended Abstracts Vol. 93-I, Honolulu, HI, 1993, May 16–21.

  6. F. Capeano, F. Croce and B. Scrosati, J. Electrochem. Soc.138, 1918 (1991).

    Google Scholar 

  7. B. Kumar, J.D. Schaffer, N. Munichandraiah and P.T. Weissman, Power Sources 14 (A. Attewell and T. Keily, Eds.) International Power Sources, Symposium Committee, Surrey, UK, 1993, pp. 121.

  8. W. Wieczorek, K. Such, H. Wycislik and J. Plocharski, Solid State Ionics36, 255 (1989).

    Article  CAS  Google Scholar 

  9. F. Croce, S. Panero and B. Scrosati, Mater. Res. Soc. Symp. Proc.210, 179 (1991).

    CAS  Google Scholar 

  10. H.Y. Sun, H.J. Sohn, O. Yamamoto, Y. Takeda and N. Imanish, J. Electrochem. Soc.146, 1672 (1991).

    Google Scholar 

  11. M. Armand, Solid State Ionics69, 309 (1994).

    Article  CAS  Google Scholar 

  12. Y. Aihara, M. Kodama, K. Nakahara, H. Okise and K. Marata, J. Power Sources65, 143 (1997).

    CAS  Google Scholar 

  13. Y. Ito, K. Kanehori, K. Miyauchi and T. Kudo, J. Mater. Sci.22, 1845 (1987).

    Article  CAS  Google Scholar 

  14. J. Kelly, J.R. Owen and B.C.H. Steele, J. Electroanal. Chem.168, 467 (1984).

    Article  CAS  Google Scholar 

  15. J. Kelly, J.R. Owen and B.C.H. Steele, J. Power Sources14, 13 (1985).

    CAS  Google Scholar 

  16. J. Przyluski and W. Wieczorek, Solid State Ionics36, 165 (1989).

    Article  CAS  Google Scholar 

  17. M. Alamgir and K. Abraham, J. Electrochem. Soc.140, L96 (1993).

    Google Scholar 

  18. M. Sukeshini, A. Nishimoto and M. Watanabe, Solid State Ionics86, 385 (1996).

    Google Scholar 

  19. G.B. Appetecchi, F. Croce and B. Scrosati, Electrochim. Acta40, 991 (1995).

    Article  CAS  Google Scholar 

  20. H.J. Rhoo, H.T. Jung, K. Park and T.S. Hwang, Electrochim. Acta42, 1571 (1997).

    Article  CAS  Google Scholar 

  21. D.L. Vien, N.B. Colthup, W.G. Fateley and J.G. Grasselli, Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Inc., New York, 1991, pp. 85.

    Google Scholar 

  22. M.B. Armand, J.M. Chabagno and M.J. Duclot, in: Fast -Ion Transport in Solids (P. Vashishta, J.N. Mundy and G. Shenoy, Eds.) North-Holland, Amsterdam, 1979, pp. 131.

    Google Scholar 

  23. M.L. Williams, R.F. Landell and J.D. Ferry, J. Am. Chem. Soc.77, 3701 (1955).

    CAS  Google Scholar 

  24. Y. Okamoto, T.F. Yeh, H.S. Lee and T.A. Skotheimk J. Polym. Sci. Part A, Polym. Chem.31, 2573 (1993).

    Article  CAS  Google Scholar 

  25. H. Vogel, Phys. Z.22, 645 (1922).

    Google Scholar 

  26. V.G. Tamman and H. Hesse, Z. Anorg. Allg. Chem. 19, 245 (1926).

    Google Scholar 

  27. G.S. Fulcher, J. Am. Ceram. Soc.8, 339 (1925).

    CAS  Google Scholar 

  28. J. Plocharshi and W. Wieczorek, Solid State Ionics28, 979 (1988).

    Google Scholar 

  29. J. Przyluski, K. Such, H. Wycishik and W. Wieczorek, Synth. Met.35, 241 (1990).

    CAS  Google Scholar 

  30. W. Wieczorek, Mater. Sci. Eng. B15, 108 (1992).

    Article  Google Scholar 

  31. A. Chandra, P.C. Srivastava and S. Chandra, J. Mater. Sci.30, 3633 (1995).

    Article  CAS  Google Scholar 

  32. J. Plocharski, W. Wieczorek, J. Przyluski and K. Such, Appl. Phys. A49, 55 (1989).

    Google Scholar 

  33. N. Munichandraiah, L.G. Scanlon, R.A. Marsh, B. Kumar and A.K. Sircar, J. Appl. Electrochem.25, 857 (1995).

    CAS  Google Scholar 

  34. B. Kumar and L.G. Scanlon, J. Power Sources52, 261 (1994).

    CAS  Google Scholar 

  35. N. Munichandraiah, L.G. Scanlon, R.A. Marsh, B. Kumar and A.K. Sircar, J. Appl. Electrochem.24, 1066 (1994).

    Article  CAS  Google Scholar 

  36. J. Przyluski, M. Sickierski and W. Wieczorek, Electrochim. Acta40, 2101 (1995).

    Article  CAS  Google Scholar 

  37. B.K. Choi, Y.W. Kim and K.H. Shiv, J. Power Sources68, 357 (1997).

    CAS  Google Scholar 

  38. B. Kumar, J.D. Schaffer, N. Munichandraiah and L.G. Scanlon, J. Power Sources47, 63 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, S., Uma, T. Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes. Ionics 6, 288–293 (2000). https://doi.org/10.1007/BF02374079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374079

Keywords

Navigation