Skip to main content
Log in

Anticancer and antimicrobial evaluation of novel conductive ZnO2 doped polymer patches for cancer treatment and tissue engineering applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The novel polymer composites POT + PCL, POT + ZnO2/PCL were prepared as patches by solution casting technique. The synthesized patches characterized by XRD, FT-IR and FESEM analysis. Besides, the samples were subjected to DC conductivity study and biological activities. The POT + ZnO2/PCL composites have higher conductivity in the conducting range 0.04 × 10–2 (S/cm) compared to POT + PCL film. Antibacterial activity was tested on the composites against gramme positive (S. aureus) and gramme negative (E. coli) bacterial pathogens. At high dosages, both patches demonstrated substantial antibacterial action against E. coli. Furthermore, in vitro anticancer studies on MG63 bone cancer cells demonstrated that POT + ZnO2/PCL composites had the maximum cytotoxicity (27.33 μg/ml), followed by POT + PCL (44.93 μg/ml) composite patch. Overall, the results of this investigation revealed significant electrical characteristics, antibacterial activity, and anticancer activity, suggesting that they could be applied in scaffolds for tissue engineering, anticancer therapy, as well as other applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diba M, Kharaziha M, Fathi MH, Gholipourmalekabadi M, Samadikuchaksaraei A (2012) Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Compos Sci Technol 72(6):716–723

    Article  CAS  Google Scholar 

  2. Chapekar MS (2000) Tissue engineering: challenges and opportunities. J Biomed Mater Res 53(6):617–620

    Article  CAS  PubMed  Google Scholar 

  3. Dehghani Sani F, Shakibapour N, Beigoli S, Sadeghian H, Hosainzadeh M, Chamani J (2018) Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: spectroscopic and molecular modeling investigations. J Lumin 203:599–608

    Article  CAS  Google Scholar 

  4. Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429

    Article  CAS  Google Scholar 

  5. Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S (2018) PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 60(7):506–532

    Article  CAS  PubMed  Google Scholar 

  6. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19

    Article  Google Scholar 

  7. Qazi TH, Rai R, Dippold D, Roether JE, Schubert DW, Rosellini E, Boccaccini AR (2014) Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications. Acta Biomater 10(6):2434–2445

    Article  CAS  PubMed  Google Scholar 

  8. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353

    Article  CAS  PubMed  Google Scholar 

  9. Kim YD, Kim JH (2007) Synthesis of polypyrrole–polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions. Colloid Polym Sci 286(6–7):631–637

    Google Scholar 

  10. Chamani J (2006) Comparison of the conformational stability of the non-native α-helical intermediate of thiol-modified β-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. J Colloid Interface Sci 299(2):636–646

    Article  CAS  PubMed  Google Scholar 

  11. Yildiz U, IlkarErdagi S (2019) Diosgenin conjugated PCL-MPEG polymeric nanoparticles for co-delivery of anticancer drugs: design, optimization, in vitro drug release and evaluation of anticancer activity. New J Chem 43:1–16

    Google Scholar 

  12. Chamani J (2010) Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J Mol Struct 979(1–3):227–234

    Article  CAS  Google Scholar 

  13. Stejskal J, Gilbert RG (2002) Polyaniline- Preparation of a conducting polymer(IUPAC Technical Report). Pure Appl Chem 74(5):857–867

    Article  CAS  Google Scholar 

  14. Anand J, Palaniappan S, Sathyanarayana D (1998) Conducting polyaniline blends and composites. Prog Polym Sci 23(6):993–1018

    Article  CAS  Google Scholar 

  15. Yu Z, Gao L, Chen K et al (2021) Nanoparticles: a new approach to upgrade cancer diagnosis and treatment. Nanoscale Res Lett 16:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Q, Yan Y, Li S, Feng T (2010) The synthesis and characterization of a novel biodegradable and electroactive polyphosphazene for nerve regeneration. Mater Sci Eng C 30(1):160–166

    Article  CAS  Google Scholar 

  17. Huang L, Hu J, Lang L, Wang X, Zhang P, Jing X, MacDiarmid AG (2007) Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28(10):1741–1751

    Article  CAS  PubMed  Google Scholar 

  18. Lakard B, Ploux L, Anselme K, Lallemand F, Lakard S, Nardin M, Hihn JY (2009) Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 75(2):148–157

    Article  CAS  PubMed  Google Scholar 

  19. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5(4):e17–e35

    Article  CAS  PubMed  Google Scholar 

  20. Bidez PR, Li S, MacDiarmid AG, Venancio EC, Wei Y, Lelkes PI (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17(1–2):199–212

    Article  CAS  PubMed  Google Scholar 

  21. Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56(2):261–272

    Article  CAS  PubMed  Google Scholar 

  22. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castano H, O’Rear EA, McFetridge PS, Sikavitsas VI (2004) Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells. Macromol Biosci 4(8):785–794

    Article  CAS  PubMed  Google Scholar 

  24. Garner B, Hodgson AJ, Wallace GG, Underwood PA (1999) Human endothelial cell attachment to and growth on polypyrrole–heparin is fibronectin dependent. J Mater Sci Mater Med 10:19–27

    Article  CAS  PubMed  Google Scholar 

  25. Lee JW, Serna F, Nickels J, Schmidt CE (2006) Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromol 7:1692–1695

    Article  CAS  Google Scholar 

  26. Zhang Z, Roy R, Dugre FJ, Tessier D, Dao LH (2001) In vitro biocompatibility study of electrically conductive polypyrrole-coated polyester fabrics. J Biomed Mater Res 57:63–71

    Article  CAS  PubMed  Google Scholar 

  27. Alikacem N, Marois Y, Zhang Z, Jakubiec B, Roy R, King MW et al (1999) Tissue reactions to polypyrrole-coated polyesters: a magnetic resonance relaxometry study. Artif Organs 23(10):910–919

    Article  CAS  PubMed  Google Scholar 

  28. Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM et al (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43

    Article  CAS  PubMed  Google Scholar 

  29. Kim S, Oh WK, Jeong YS, Hong JY, Cho BR, Hahn JS et al (2011) Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells. Biomaterials 32:2342–2350

    Article  CAS  PubMed  Google Scholar 

  30. Ferraz N, Strømme M, Fellstrom B, Pradhan S, Nyholm L, Mihranyan A (2012) In vitro and in vivo toxicity of rinsed and aged nanocellulose–polypyrrole composites. J Biomed Mater Res A 100:2128–38

    Article  PubMed  Google Scholar 

  31. Moosavi-Movahedi A, Chamani J, Gharanfoli M, Hakimelahi G (2004) Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochim Acta 409(2):137–144

    Article  CAS  Google Scholar 

  32. Chamani J, Moosavi-Movahedi A, Saboury A, Gharanfoli M, Hakimelahi G (2003) Calorimetric indication of the molten globule-like state of cytochrome c induced by n-alkyl sulfates at low concentrations. J Chem Thermodyn 35(2):199–207

    Article  CAS  Google Scholar 

  33. Sohrabi T, Hosseinzadeh M, Beigoli S, Saberi MR, Chamani J (2018) Probing the binding of lomefloxacin to a calf thymus DNA-histone H1 complex by multi-spectroscopic and molecular modeling techniques. J Mol Liq 256:127–138

    Article  CAS  Google Scholar 

  34. Sadeghzadeh F, Entezari AA, Behzadian K, Habibi K, Amiri-Tehranizadeh Z, Asoodeh A, Saberi MR, Chamani J (2020) Characterizing the binding of angiotensin converting enzyme I inhibitory peptide to human hemoglobin: influence of electromagnetic fields. Protein Pept Lett 27(10):1007–1021

    CAS  PubMed  Google Scholar 

  35. Dareini M, Tehranizadeh Z A, Marjani N, Taheri R, Aslani-Firoozabadi S, Talebi A, Chamani J (2019) A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: experimental and in silico approaches. Spectrochim Acta A Mol Biomol Spectrosc, 117528.

  36. Zhang QS, Yan YH, Li SP, Feng T (2009) Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed Mater 4:1–9

    Article  Google Scholar 

  37. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng Part A 15:3605–3619

    Article  CAS  PubMed  Google Scholar 

  38. Guo Y et al (2007) Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications. Biomacromol 8:3025–3034

    Article  CAS  Google Scholar 

  39. Bidez PR, Li S, Macdiarmid AG, Venancio EC, Wei Y, Lelkes PI (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17:199–212

    Article  CAS  PubMed  Google Scholar 

  40. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  41. Ponnamma D, Sadasivuni KK, Strankowski M, Kasak P, Krupa I, AlMaadeed MAA (2016) Eco-friendly electromagnetic interference shielding materials from flexible reduced graphene oxide filled polycaprolactone/polyaniline nanocomposites. Polym-Plast Technol Eng 55(9):920–928

    Article  CAS  Google Scholar 

  42. Zhang H (2011) Characterization of electrospun Poly(lactic acid)/Polyaniline blend nanofibers. J Adv Mater Res 332–334:317–320

    Article  Google Scholar 

  43. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol 2012:1–6

    Article  Google Scholar 

  44. Kumar B, Smita K, Cumbal L, Debut A (2014) Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg Chem Appl 2014:1–7

    Article  Google Scholar 

  45. Khader A, Arinzeh TL (2019) Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol Bioeng 2019:1–16

    Google Scholar 

  46. Subramanian E, Dhana RR, Vijayakumar N, Sivakumar G (2012) Hybrid composite materials of anatase titania and conducting polyaniline: properties and chemical sensor application. IJEMS 19(4):237–244

    CAS  Google Scholar 

  47. Khan SA, Rahman A, Ibrahim FBD-A (2021) The impact of film thickness on the properties of ZnO/PVA nanocomposite film. Mater Res Express 8:075002

    Article  CAS  Google Scholar 

  48. Wu JC-C (2013) Nanofibrous Polyaniline: an Antioxidative and Antimicrobial polymer with potential Tissue-engineering and Related Applications. University of Auckland

  49. Wang JC, Zheng H, Chang MW, Ahmad Z, Li JS (2017) Preparation of active 3D film patches via alighned fiber electrohydro dynamic (EHD) Printing. Sci Rep 7:43924

    Article  PubMed  PubMed Central  Google Scholar 

  50. Borriello A, Guarino V, Schiavo L, Alvarez-Perez MA, Ambrosio L (2011) Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci Mater Med 22:1053–1062

    Article  CAS  PubMed  Google Scholar 

  51. Getie S, Belay A, Chandra Reddy AR, Belay Z (2017) Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J Nanomedic Nanotechnol. https://doi.org/10.4172/2157-7439.S8-004

    Article  Google Scholar 

  52. Shamhari NM, Wee BS, Chin SF, Kok KY (2018) Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim Slov 65:578–585

    Article  CAS  PubMed  Google Scholar 

  53. Chamani J, Moosavi-Movahedi AA (2006) Effect of n-alkyl trimethylammonium bromides on folding and stability of alkaline and acid-denatured cytochrome c: a spectroscopic approach. J Colloid Interface Sci 297(2):561–569

    Article  CAS  PubMed  Google Scholar 

  54. Jahanshahtalab M, Kamshad M, Rezaei S, Beigoli S, Sharifi Rad A, Mehrzad J, Chamani J (2019) New insights into alpha-lactalbumin behavior upon interaction with resveratrol and curcumin by spectroscopic and molecular modeling techniques: binary and ternary system comparison. J Iran Chem Soc 16(6):1311–1326

    Article  CAS  Google Scholar 

  55. Lu X, Qiu Z, Wan Y, Hu Z, Zhao Y (2010) Preparation and characterization of conducting polycaprolactone/chitosan/polypyrrole composites. Compos A Appl Sci Manuf 41(10):1516–1523

    Article  Google Scholar 

  56. Feng J, Li J, Chan C (2002) Distribution of carbon black in semicrystalline polypropylene studied by transmission electron microscopy. J Appl Polym Sci 85:358–365

    Article  CAS  Google Scholar 

  57. Balan R, Gayathri V (2021) In-vitro and antibacterial activities of novel POT/TiO2/PCL composites for tissue engineering and biomedical applications. Polym Bull. https://doi.org/10.1007/s00289-021-03707-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balan, R., Gayathri, V. & Priya, R. Anticancer and antimicrobial evaluation of novel conductive ZnO2 doped polymer patches for cancer treatment and tissue engineering applications. Polym. Bull. 79, 10625–10638 (2022). https://doi.org/10.1007/s00289-021-04001-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04001-4

Keywords

Navigation