Skip to main content
Log in

Pullulan-based nanocomposite films with enhanced hydrophobicity and antibacterial performances

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Pullulan is a linear homopolysaccharide of glucose and produced by certain strains of the polymorphic fungus Aureobasidium pullulans. It has long been widely used in various fields from food additives to environmental remediation agents. In this study, a new composite films material pullulan/tributyl citrate (TBC)/copper-containing metal–organic frameworks (Cu-MOFs) were prepared. Through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS), the existence of different components in the composite film was verified. Further studies confirmed that the content of the hydrophobic plasticizer TBC component improves the ultraviolet (UV) absorption efficiency of the composite material, but has little effect on the visible light region. At the same time, with the increase of TBC content, the water resistance of the composite material has been significantly promoted from seconds to minutes without being damaged. The antibacterial activity and biocompatibility of the composite material were also evaluated. The results showed that the presence of Cu-MOFs enables composite material to possess good antibacterial properties and the antibacterial rates against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were high to 99.9%. Besides, the composite material maintained the excellent biocompatibility of pullulan polymer and the cell survival rates of the samples were more than 100%, indicating that the pullulan/TBC/Cu-MOFs composite film can enhance cell proliferation. Therefore, the composite materials can effectively overcome the shortcomings of pure pullulan polymer films, such as poor water resistance and lack of antibacterial properties, and expand the application prospects of pullulan polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Kanmani P, Lim ST (2013) Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym 97(2):421–428. https://doi.org/10.1016/j.carbpol.2013.04.048

    Article  CAS  PubMed  Google Scholar 

  2. Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2015.00200

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xiang J, Yang S, Zhang J et al (2021) The preparation of sorbitol and its application in polyurethane: a review. Polym Bull. https://doi.org/10.1007/s00289-021-03639-4

    Article  Google Scholar 

  4. Silva NHCS, Vilela C, Almeida A, Marrucho IM, Freire CSR (2018) Pullulan-based nanocomposite films for functional food packaging: Exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocoll 77:921–930. https://doi.org/10.1016/j.foodhyd.2017.11.039

    Article  CAS  Google Scholar 

  5. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  6. Lee I, Akiyoshi K (2004) Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25(15):2911–2918. https://doi.org/10.1016/j.biomaterials.2003.09.065

    Article  CAS  PubMed  Google Scholar 

  7. Trovatti E, Fernandes SCM, Rubatat L, Perez DdaS, Freire CSR, Silvestre AJD, Neto CP (2012) Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol 72(13):1556–1561. https://doi.org/10.1016/j.compscitech.2012.06.003

    Article  CAS  Google Scholar 

  8. Pinto RJB, Almeida A, Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Trindade T (2013) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf, B 103:143–148. https://doi.org/10.1016/j.colsurfb.2012.09.045

    Article  CAS  Google Scholar 

  9. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2011) Metal-Organic frameworks in biomedicine. Chem Rev 112(2):1232–1268. https://doi.org/10.1021/cr200256v

    Article  CAS  PubMed  Google Scholar 

  10. Shen M, Forghani F, Kong X, Liu D, Ye X, Chen S, Ding T (2020) Antibacterial applications of metal–organic frameworks and their composites. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12515

    Article  PubMed  Google Scholar 

  11. Zhao W, Deng J, Ren Y, Xie L, Li W, Wang Q, Li S, Liu S (2020) Antibacterial application and toxicity of metal–organic frameworks. Nanotoxicology. https://doi.org/10.1080/17435390.2020.1851420

    Article  PubMed  Google Scholar 

  12. Jaros SW, Guedes da Silva MFC, Florek M, Oliveira MC, Smoleński P, Pombeiro AJL, Kirillov AM (2014) Aliphatic dicarboxylate directed assembly of Silver(I) 1,3,5-Triaza-7-phosphaadamantane coordination networks: topological versatility and antimicrobial activity. Cryst Growth Des 14(11):5408–5417. https://doi.org/10.1021/cg500557r

    Article  CAS  Google Scholar 

  13. Slenters TV, Sagué JL, Brunetto PS, Zuber S, Fleury A, Mirolo L, Robin AY, Meuwly M, Gordon O, Landmann R, Daniels AU, Fromm KM (2010) Of chains and rings: synthetic strategies and theoretical investigations for tuning the structure of silver coordination compounds and their applications. Materials 3(5):3407–3429. https://doi.org/10.3390/ma3053407

    Article  CAS  PubMed Central  Google Scholar 

  14. Aguado S, Quirós J, Canivet J, Farrusseng D, Boltes K, Rosal R (2014) Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere 113:188–192. https://doi.org/10.1016/j.chemosphere.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  15. Xiao J, Zhu Y, Huddleston S, Li P, Xiao B, Farha OK, Ameer GA (2018) Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 12(2):1023–1032. https://doi.org/10.1021/acsnano.7b01850

    Article  CAS  PubMed  Google Scholar 

  16. Xiao J, Chen S, Yi J, Zhang HF, Ameer GA (2016) A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv Func Mater 27(1):1604872. https://doi.org/10.1002/adfm.201604872

    Article  CAS  Google Scholar 

  17. Luqman M (2012) Recent Advances in Plasticizers Pharmaceutically Used Plasticizers[J]. https://doi.org/10.5772/2228(Chapter 4).

  18. Li X-G, Xie Y-B, Huang M-R, Umeyama T, Ohara T, Imahori H (2019) Effective role of eco-friendly acetyl tributyl citrate in large-scale catalyst-free synthesis of waterborne polyurethanes without volatile organic compounds. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.07.018

    Article  Google Scholar 

  19. Fonseca JD, Latifi AM, Orjuela A, Rodríguez G, Gil ID (2019) Modeling, analysis and multi-objective optimization of an industrial batch process for the production of tributyl citrate. Comput Chem Eng. https://doi.org/10.1016/j.compchemeng.2019.106603

    Article  Google Scholar 

  20. Erythropel HC, Shipley S, Börmann A, Nicell JA, Maric M, Leask RL (2016) Designing green plasticizers: Influence of molecule geometry and alkyl chain length on the plasticizing effectiveness of diester plasticizers in PVC blends. Polymer 89:18–27. https://doi.org/10.1016/j.polymer.2016.02.031

    Article  CAS  Google Scholar 

  21. Snejdrova E, Dittrich M (2012) Pharmaceutically Used Plasticizers, IntechOpen, London

  22. Kim H, Choi M, Ji Y, Kim I, Kim G, Bae I, Gye MC, Yoo H (2018) Pharmacokinetic properties of acetyl tributyl citrate, a pharmaceutical excipient. Pharmaceutics 10(4):177. https://doi.org/10.3390/pharmaceutics10040177

    Article  CAS  PubMed Central  Google Scholar 

  23. Bonilla E, del Mazo J (2010) Deregulation of the Sod1 and Nd1 genes in mouse fetal oocytes exposed to mono-(2-ethylhexyl) phthalate (MEHP). Reprod Toxicol 30(3):387–392. https://doi.org/10.1016/j.reprotox.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  24. Singh S, Li SS-L (2011) Phthalates: toxicogenomics and inferred human diseases. Genomics 97(3):148–157. https://doi.org/10.1016/j.ygeno.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  25. Liu T, Jiang P, Liu H, Li M, Dong Y, Wang R, Wang Y (2017) Performance testing of a green plasticizer based on lactic acid for PVC. Polym Testing 61:205–213. https://doi.org/10.1016/j.polymertesting.2017.05.012

    Article  CAS  Google Scholar 

  26. Finkelstein M, Gold H (1959) Toxicology of the citric acid esters: Tributyl citrate, acetyl tributyl citrate, triethyl citrate, and acetyl triethyl citrate. Toxicol Appl Pharmacol 1(3):283–298. https://doi.org/10.1016/0041-008x(59)90113-9

    Article  CAS  PubMed  Google Scholar 

  27. Petit C, Burress J, Bandosz TJ (2011) The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon 49(2):563–572. https://doi.org/10.1016/j.carbon.2010.09.059

    Article  CAS  Google Scholar 

  28. Zheng J, Nie Q, Guan H et al (2021) A novel waterborne fluorinated polyurethane–acrylate film for ultraviolet blocking and antiprotein fouling. J Coat Technol Res. https://doi.org/10.1007/s11998-021-00492-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang S, Ye B, An C, Wang J, Li Q (2018) Synergistic effects between Cu metal–organic framework (Cu-MOF) and carbon nanomaterials for the catalyzation of the thermal decomposition of ammonium perchlorate (AP). J Mater Sci. https://doi.org/10.1007/s10853-018-03219-4

    Article  Google Scholar 

  30. Zhang Y, Bo X, Luhana C, Wang H, Li M, Guo L (2013) Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem Commun 49(61):6885. https://doi.org/10.1039/c3cc43292k

    Article  CAS  Google Scholar 

  31. Long X, Yin P, Lei T, Wang K, Zhan Z (2019) Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.118187

    Article  Google Scholar 

  32. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng L-S (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng, C 49:463–471. https://doi.org/10.1016/j.msec.2015.01.024

    Article  CAS  Google Scholar 

  33. Lemmouchi Y, Murariu M, Santos AMD, Amass AJ, Schacht E, Dubois P (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(d, l-lactide)-b-poly(ethylene glycol) copolymers. Eur Polymer J 45(10):2839–2848. https://doi.org/10.1016/j.eurpolymj.2009.07.006

    Article  CAS  Google Scholar 

  34. Chen X, Nie Q, Shao Y, Wang Z, Cai Z (2021) TiO2 nanoparticles functionalized borneol-based polymer films with enhanced photocatalytic and antibacterial performances. Environ Technol Innov 21:1010304. https://doi.org/10.1016/j.eti.2020.101304 (ISSN 2352-1864)

    Article  CAS  Google Scholar 

  35. Wang N, Zhang X, Ma X, Fang J (2008) Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polym Degrad Stab 93(6):1044–1052. https://doi.org/10.1016/j.polymdegradstab.2008.03.023

    Article  CAS  Google Scholar 

  36. Ma Q, Yin P, Zhao M, Luo Z, Huang Y, He Q, Yu Y, Liu Z, Hu Z, Chen B, Zhang H (2019) MOF-based hierarchical structures for solar-thermal clean water production. Adv Mater 31:1808249. https://doi.org/10.1002/adma.201808249

    Article  CAS  Google Scholar 

  37. Gnanasekaran G, Balaguru S, Arthanareeswaran G, Das DB (2018) Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Sep Sci Technol. https://doi.org/10.1080/01496395.2018.1508232

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project of New Seedling Talents Program of Zhejiang Province (No. 2019R434001), Lishui public welfare Technology Application Research Plan (No.2020GYX08) and Innovation and Entrepreneurship Program for college students in Zhejiang Province (No. S202010352036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinlin Shao, Mingguo Cao or Xiaomei Liang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 555 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Zhang, L., Mao, X. et al. Pullulan-based nanocomposite films with enhanced hydrophobicity and antibacterial performances. Polym. Bull. 79, 10765–10781 (2022). https://doi.org/10.1007/s00289-021-03996-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03996-0

Keywords

Navigation