Skip to main content
Log in

Study on the synthesis, properties, and efficiency of two new superparamagnetic nanocomposites of poly(m-aminobenzenesulfonic acid) and TiO2 in P–N junction hybrid solar cells

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this article, novel nanocomposites of poly(3- or m-aminobenzenesulfonic acid) and TiO2 were synthesized by very simple in-situ polymerization of monomer (m-ABS) by FeCl3.6H2O as an oxidant and TiO2 particles as inorganic phase under solid-state condition. The combination of N-type TiO2 and P-type PABS led to the preparation of two new P–N junction type nanocomposites. The polymer-hybrid solar cells were fabricated using the nanocomposites as FTO/TiO2/NCPABS-TiO2/Al and under simulated solar irradiation demonstrated power conversion efficiencies (PCE, η) about 1%. The other advantages of this work were fewer fabrication costs, ease-of-processing, green synthesis condition, a simple structure of the solar cell (single layer), and the high stability of the resulted cells. The synthesized nanocomposites (NCPABS-TiO2-1 and 2) were characterized by FT-IR, UV–vis, VSM, XRD, CV, TGA, and CHNS analysis. The electrical properties and conductivity of the nanocomposites were shown that are electro-active and semi-conductive. The morphology of the compounds was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that revealed core–shell and nanosheet morphologies, respectively. Also, the effect of core–shell and nanosheet morphology, the presence of -SO3H group, and TiO2 enhancer phase as a separate hole transition layer in solar cell and as an inorganic phase in nanocomposite matrix (active layer) on the power conversion efficiency of hybrid solar cells was investigated. Indeed, it is shown even a small amount of magnetic (nano)material [FeCl2, FeCl3, and/or high spin Fe (ii, iii) complexes] can increase the efficiency of the cell due to conversion of photogenerated state from spin singlet to triplet.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao Y, Li C, Liu X, Gu F, Jiang H, Shao W, Zhang L, He Y (2002) Synthesis and optical properties of TiO2 nanoparticles. Mater Lett 61:79–83. https://doi.org/10.1016/j.matlet.2006.04.010

    Article  CAS  Google Scholar 

  2. Beydoun D, Amal R (2002) Implications of heat treatment on the properties of a magnetic iron oxide–titanium dioxide photocatalyst. Mater Sci Eng B 94:71–81. https://doi.org/10.1016/S0921-5107(02)00085-5

    Article  Google Scholar 

  3. Enyashin AN, Seifert G (2005) Structure, stability and electronic properties of TiO2 nanostructures. Phys Status Solidi B 242:1361–1370. https://doi.org/10.1002/pssb.200540026

    Article  CAS  Google Scholar 

  4. Wang J, He B, Kong XZ (2015) A study on the preparation of floating photocatalyst supported by hollow TiO2 and its performance. Appl Surf Sci 327:406–412. https://doi.org/10.1016/j.apsusc.2014.11.112

    Article  CAS  Google Scholar 

  5. de Oliveira AH, de Oliveira HP (2013) Optimization of photocatalytic activity of PPy/TiO2 nanocomposites. Polym bull 70:579–591. https://doi.org/10.1007/s00289-012-0872-1

    Article  CAS  Google Scholar 

  6. Sánchez-Rodríguez D, Medrano MGM, Remita H, Escobar-Barrios V (2018) Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation. J Environ Chem Eng 6:1601–1612. https://doi.org/10.1016/j.jece.2018.01.061

    Article  CAS  Google Scholar 

  7. Singh N, Chakraborty R, Gupta RK (2018) Mutton bone derived hydroxyapatite supported TiO2 nanoparticles for sustainable photocatalytic applications. J Environ Chem Eng 6:459–467. https://doi.org/10.1016/j.jece.2017.12.027

    Article  CAS  Google Scholar 

  8. Nikfarjam A, Salehifar N (2015) Improvement in gas-sensing properties of TiO2 nanofiber sensor by UV irradiation. Sens Actuators B Chem 211:146–156. https://doi.org/10.1016/j.snb.2015.01.078

    Article  CAS  Google Scholar 

  9. von Goetz N, Lorenz C, Windler L, Nowack B, Heuberger M, Hungerbuhler K (2013) Migration of Ag-and TiO2-(Nano) particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987. https://doi.org/10.1021/es304329w

    Article  CAS  Google Scholar 

  10. Sarantopoulos C, Puzenat E, Guillard C, Herrmann JM, Gleizes AN, Maury F (2009) Microfibrous TiO2 supported photocatalysts prepared by metal-organic chemical vapor infiltration for indoor air and waste water purification. Appl Catal B Environ 91:225–233. https://doi.org/10.1016/j.apcatb.2009.05.029

    Article  CAS  Google Scholar 

  11. Lv J, Zhang J, Liu J, Li Z, Dai K, Liang C (2018) Bi SPR-promoted Z-scheme Bi2MoO6/CdS-diethylenetriamine composite with effectively enhanced visible light photocatalytic hydrogen evolution activity and stability. ACS Sustain Chem Eng 6:696–706. https://doi.org/10.1021/acssuschemeng.7b03032

    Article  CAS  Google Scholar 

  12. Dziewoński PM, Grzeszczuk M (2010) Towards TiO2-conducting polymer hybrid materials for lithium ion batteries. Electrochim Acta 55:3336–3347. https://doi.org/10.1016/j.electacta.2010.01.043

    Article  CAS  Google Scholar 

  13. Barman S, Deng F, McCreery RL (2008) Conducting polymer memory devices based on dynamic doping. J Am Chem Soc 130:11073–11081. https://doi.org/10.1021/ja802673w

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Y, Xu S, Jiang L, Pan K, Dan Y (2008) Synthesis and characterization of polythiophene/titanium dioxide composites. React Funct Polym 68:1492–1498. https://doi.org/10.1016/j.reactfunctpolym.2008.07.008

    Article  CAS  Google Scholar 

  15. Wang H, Ma L, Gan M, Zhou T, Sun X, Dai W, Wang H, Wang S (2015) Fabrication of polyaniline/urchin-like mesoporous TiO2 spheres nanocomposite and its application in supercapacitors. Electrochim Acta 163:232–237. https://doi.org/10.1016/j.electacta.2015.02.088

    Article  CAS  Google Scholar 

  16. Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 54:1249–1254. https://doi.org/10.1016/j.electacta.2008.08.069

    Article  CAS  Google Scholar 

  17. Kannan K, Radhika D, Reddy KR, Raghu AV, Sadasivuni KK, Palani G, Gurushankar K (2021) Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Expr 2(1):010014

    Google Scholar 

  18. Srinivas M, Venkata RC, Kakarla RR, Shetti NP, Reddy MS, Anjanapura VR (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater Res Expr 6(12):125502

    Article  CAS  Google Scholar 

  19. Karthik KV, Reddy CV, Reddy KR, Ravishankar R, Sanjeev G, Kulkarni RV, Shetti NP, Raghu AV (2019) Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J Mater Sci: Mater Electron 30(23):20646–20653

    CAS  Google Scholar 

  20. Reddy KR, Jyothi MS, Raghu AV, Sadhu V, Naveen S, Aminabhavi TM (2020) Nanocarbons-supported and polymers-supported titanium dioxide nanostructures as efficient photocatalysts for remediation of contaminated wastewater and hydrogen production. Nanophotocat Environ Appl 54:139–169

    Article  Google Scholar 

  21. Kannan K, Radhika D, Nesaraj AS, Sadasivuni KK, Reddy KR, Kasai D, Raghu AV (2020) Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater Sci Energy Technol 3:853–861

    CAS  Google Scholar 

  22. Jangid NK, Jadoun S, Yadav A, Srivastava M, Kaur N (2020) Polyaniline-TiO2-based photocatalysts for dyes degradation. Polym Bull. https://doi.org/10.1007/s00289-020-03318-w

    Article  Google Scholar 

  23. Karim MR, Yeum JH, Lee MS, Lim KT (2008) Preparation of conducting polyaniline/TiO2 composite submicron-rods by the γ-radiolysis oxidative polymerization method. React Funct Polym 68:1371–1376. https://doi.org/10.1016/j.reactfunctpolym.2008.06.016

    Article  CAS  Google Scholar 

  24. Zhang YX, Song YH, Zheng Q (2013) Mechanical and thermal properties of nanosized titanium dioxide filled rigid poly (vinyl chloride). Chinese J Polym Sci 31:325–332. https://doi.org/10.1007/s10118-013-1219-6

    Article  CAS  Google Scholar 

  25. Huyen DN, Tung NT, Thien ND, Thanh LH (2011) Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 11:1924–1931. https://doi.org/10.3390/s110201924

    Article  CAS  PubMed Central  Google Scholar 

  26. Reynolds JR, Skotheim TA (eds) (2007) Handbook of conducting polymers: conjugated polymers: theory, synthesis, properties, and characterization. CRC Press

    Google Scholar 

  27. Mao J, Wu FF, Shi WH, Liu WX, Xu XL, Cai GF, Li YW, Cao XH (2020) Preparation of polyaniline-coated composite aerogel of MnO2 and reduced graphene oxide for high-performance Zinc-ion battery. Chinese J Polym Sci 38:514–521. https://doi.org/10.1007/s10118-020-2353-6

    Article  CAS  Google Scholar 

  28. Kiattibutr P, Tarachiwin L, Ruangchuay L, Sirivat A, Schwank J (2002) Electrical conductivity responses of polyaniline films to SO2–N2 mixtures: effect of dopant type and doping level. React Funct Polym 53:29–37

    Article  CAS  Google Scholar 

  29. Chandrakanthi N, Careem MA (2000) Preparation and characterization of fully oxidized form of polyaniline. Polym Bull 45:113–120. https://doi.org/10.1007/s002890070038

    Article  CAS  Google Scholar 

  30. Nguyen DA, Raghu AV, Choi JT, Jeong HM (2010) Properties of thermoplastic polyurethane/functionalised graphene sheet nanocomposites prepared by the in situ polymerisation method. Polym Polym Compos 18(7):351–358

    CAS  Google Scholar 

  31. Shabzendedar S, Modarresi-Alam AR, Noroozifar M, Kerman K (2020) Core-shell nanocomposite of superparamagnetic Fe3O4 nanoparticles with poly (m-aminobenzenesulfonic acid) for polymer solar cells. Org Electron 77:105462. https://doi.org/10.1016/j.orgel.2019.105462

    Article  CAS  Google Scholar 

  32. Sadegh F, Modarresi-Alam AR, Noroozifar M, Kerman K (2020) A facile and green synthesis of superparamagnetic Fe3O4@ PANI nanocomposite with a core–Shell structure to increase of triplet state population and efficiency. J Environ Chem Eng 9:104942. https://doi.org/10.1016/j.jece.2020.104942

    Article  CAS  Google Scholar 

  33. Padinger F, Brabec CJ, Fromherz T, Hummelen JC, Sariciftci NS (2000) Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique. Optoelectron Rev 4:280–283

    Google Scholar 

  34. Trchová M, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure Appl Chem 83:1803–1817. https://doi.org/10.1351/PAC-REP-10-02-01

    Article  CAS  Google Scholar 

  35. Trchová M, Šeděnková I, Tobolková E, Stejskal J (2004) FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym Degrad Stab 86:179–185. https://doi.org/10.1016/j.polymdegradstab.2004.04.011

    Article  CAS  Google Scholar 

  36. Reddy KR, Karthik KV, Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    Article  CAS  Google Scholar 

  37. Sim B, Chae HS, Choi HJ (2015) Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields. Expr Polym Lett 9:736–743. https://doi.org/10.3144/expresspolymlett.2015.68

    Article  CAS  Google Scholar 

  38. da Silva JP, Temperini MLA, De Torresi SC (1999) Secondary doping of polyaniline studied by resonance Raman spectroscopy. Electrochim Acta 44:1887–1891. https://doi.org/10.1016/S0013-4686(98)00330-2

    Article  Google Scholar 

  39. Khan H, Swati IK (2016) Fe3+-doped anatase TiO2 with d–d transition, oxygen vacancies and Ti3+ centers: synthesis, characterization, UV–vis photocatalytic and mechanistic studies. Ind Eng Chem Res 55:6619–6633. https://doi.org/10.1021/acs.iecr.6b01104

    Article  CAS  Google Scholar 

  40. Al-Taweel SS, Saud HR (2016) New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method. J Chem Pharm Res 8:620–626

    CAS  Google Scholar 

  41. Vetrivel V, Rajendran K, Kalaiselvi V (2015) Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method. Int J Chem Tech Res 7:1090–1097

    Google Scholar 

  42. Du XS, Zhou CF, Wang GT, Mai YW (2008) Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chem Mater 20:3806–3808. https://doi.org/10.1021/cm800689b

    Article  CAS  Google Scholar 

  43. Farrokhzadeh A, Modarresi-Alam AR (2016) Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline]. J Solid State Chem 237:258–268. https://doi.org/10.1016/j.jssc.2016.02.032

    Article  CAS  Google Scholar 

  44. Modarresi-Alam AR, Amirazizi HA, Movahedifar F, Farrokhzadeh A, Asli GR, Nahavandi H (2015) The first report of polymerization and characterization of aniline bearing chiral alkyl group on ring via covalent bond; poly [(±)-2-(sec-butyl) aniline]. J Mol Struct 1083:17–26. https://doi.org/10.1016/j.molstruc.2014.11.003

    Article  CAS  Google Scholar 

  45. Liao Y, Strong V, Chian W, Wang X, Li XG, Kaner RB (2012) Sulfonated polyaniline nanostructures synthesized via rapid initiated copolymerization with controllable morphology, size, and electrical properties. Macromolecules 45:1570–1579. https://doi.org/10.1021/ma2024446

    Article  CAS  Google Scholar 

  46. Modarresi-Alam AR, Zafari S, Miandashti AR (2015) A facile preparation method for synthesis of silica sulfuric acid/poly (o-methoxyaniline) core–shell nanocomposite. Polym Adv Technol 26:645–657. https://doi.org/10.1002/pat.3499

    Article  CAS  Google Scholar 

  47. Yacovitch TI, Wende T, Jiang L, Heine N, Meijer G, Neumark DM, Asmis KR (2011) Infrared spectroscopy of hydrated bisulfate anion clusters: HSO4¯(H2O) 1–16. J Phys Chem Lett 2:2135–2140. https://doi.org/10.1021/jz200917f

    Article  CAS  Google Scholar 

  48. Sedighi-Darijani N, Modarresi-Alam AR, Noroozifar M, Hadavi MS (2018) Single-layer solar cell based on nanostructure of polyaniline on fluorine-doped tin oxide: a simple, low-cost and efficient FTO│n-PANI│Al cell. J Iran Chem Soc 15:967–980. https://doi.org/10.1007/s13738-018-1294-2

    Article  CAS  Google Scholar 

  49. De Albuquerque JE, Mattoso LHC, Faria RM, Masters JG, MacDiarmid AG (2004) Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy. Synth Met 146:1–10. https://doi.org/10.1016/j.synthmet.2004.05.019

    Article  CAS  Google Scholar 

  50. Yarmohamadi-Vasel M, Modarresi-Alam AR, Noroozifar M, Hadavi MS (2019) An investigation into the photovoltaic activity of a new nanocomposite of (polyaniline nanofibers)/(titanium dioxide nanoparticles) with different architectures. Synth Met 252:50–61. https://doi.org/10.1016/j.synthmet.2019.04.007

    Article  CAS  Google Scholar 

  51. Modarresi-Alam AR, Farrokhzadeh A, Shabzendedar S, Sedighi-Darijani N (2019) Synthesis of daisy-shaped core–shell nanocomposites of chiral poly [(±)-2-(sec-butyl) aniline] in the solid state. Iran Polym J 28:75–86. https://doi.org/10.1007/s13726-018-0679-5

    Article  CAS  Google Scholar 

  52. Zamani N, Modarresi-Alam AR, Noroozifar M, Javanbakht M (2019) The improved performance of lithium-ion batteries via the novel electron transport catalytic role of polyaniline (PANI) in PANI/Co3O4–CuO raspberry as new anode material. J Appl Electrochem 49:327–340. https://doi.org/10.1007/s10800-019-01286-2

    Article  CAS  Google Scholar 

  53. Modarresi-Alam AR, Soleimani M, Pakseresht M, Farzaneh-Jobaneh E, Zeraatkar V, Tabatabaei FA, Shabzendedar S, Movahedifar F (2016) Preparation of new conductive nanocomposites of polyaniline and silica under solid-state condition. Polym Int 29:387–398. https://doi.org/10.22063/jipst.2016.1412

    Article  Google Scholar 

  54. Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10:515–520. https://doi.org/10.1016/j.orgel.2008.12.011

    Article  CAS  Google Scholar 

  55. Talebi F, Rafiee Z (2020) Superparamagnetic nanocomposites: prepared by embedding Fe3O4@ graphene oxide in chiral poly (amide–imide). Polym Bull 77:2059–2071. https://doi.org/10.1007/s00289-019-02859-z

    Article  CAS  Google Scholar 

  56. Van Krevelen DW, Hoftyzer PJ (2008) Properties of polymers, 4th edn. Elsevier Scientific Publishing, Amsterdam

    Google Scholar 

  57. Ghaemy M, Shabzendedar S, Taghavi M (2014) One-step synthesis of poly (triazole-ether-quinoxaline)s using click reaction: preparation and properties of magnetic nanocomposites with modified Fe3O4 for metal ions removal. J Polym Res 21:464. https://doi.org/10.1007/s10965-014-0464-x

    Article  CAS  Google Scholar 

  58. Benz M (2012) Superparamagnetism: theory and applications. Superparamagnet Theory Appl 65:1–27

    Google Scholar 

  59. Mamiya H, Jeyadevan B (2013) Magnetic hysteresis loop in a superparamagnetic state. IEEE Trans Magn 50:1–4

    Article  Google Scholar 

  60. Guimarães AP, Guimaraes AP (2009) Principles of nanomagnetism. Springer, Berlin

    Book  Google Scholar 

  61. Kaushik A, Dalela B, Kumar S, Alvi PA, Dalela S (2013) Role of Co doping on structural, optical and magnetic properties of TiO2. J alloys compd 552:274–278. https://doi.org/10.1016/j.jallcom.2012.10.076

    Article  CAS  Google Scholar 

  62. Ghaemy M, Shabzendedar S, Taghavi M (2015) Synthesis and characterization of heterocyclic functionalized polymers by click reaction: Preparation of magnetic nanocomposites and studies on their thermal, mechanical, photophysical and metal ions removal properties. Chinese J Polym Sci 33:301–317

    Article  CAS  Google Scholar 

  63. Stejskal J, Gilbert RG (2002) Polyaniline. preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867. https://doi.org/10.1351/pac200274050857

    Article  CAS  Google Scholar 

  64. Qiang J, Yu Z, Wu H, Yun D (2008) Polyaniline nanofibers synthesized by rapid mixing polymerization. Synth Met 158:544–547. https://doi.org/10.1016/j.synthmet.2008.03.023

    Article  CAS  Google Scholar 

  65. Shen J, Sugimoto I, Matsumoto T, Horike S, Koshiba Y, Ishida K, Mori A, Nishino T (2019) Fabrication and characterization of elastomeric semiconductive thiophene polymers by peroxide crosslinking. Polymer J 51:257–263. https://doi.org/10.1038/s41428-018-0137-4

    Article  CAS  Google Scholar 

  66. Wang W, Yang F, Chen C, Zhang L, Qin Y, Knez M (2017) Tuning the conductivity of polyaniline through doping by means of single precursor vapor phase infiltration. Adv Mater Interfaces 4:1600806. https://doi.org/10.1002/admi.201600806

    Article  CAS  Google Scholar 

  67. Theivasanthi T, Alagar M (2013) Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight. arXiv preprint https://arxiv.org/abs/1307.1091,

  68. Sanches EA, Soares JC, Mafud AC, Fernandes EGR, Leite FL, Mascarenhas YP (2013) Structural characterization of Chloride Salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM. J Mol Struct 1036:121–126. https://doi.org/10.1016/j.molstruc.2012.09.084

    Article  CAS  Google Scholar 

  69. Boehme M, Ensinger W (2011) Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. NanoMicro Lett 3:236–241. https://doi.org/10.1007/BF03353678

    Article  CAS  Google Scholar 

  70. Boehme M, Fu G, Ionescu E, Ensinger W (2010) Fabrication of anatase titanium dioxide nanotubes by electroless deposition using polycarbonate for separate casting method. NanoMicro Lett 2:26–30. https://doi.org/10.5101/nml.v2i1.p26-30

    Article  CAS  Google Scholar 

  71. Cichos J, Karbowiak M (2014) A general and versatile procedure for coating of hydrophobic nanocrystals with a thin silica layer enabling facile biofunctionalization and dye incorporation. J Mater Chem B 2:556–568. https://doi.org/10.1039/C3TB21442G

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Dou C, Wang W, Wang Q, Feng N (2016) Synthesis of uniform polyaniline nanosheets and nanotubes: Dependence of morphology on the pH. Macromol Res 24:663–669. https://doi.org/10.1007/s13233-016-4097-2

    Article  CAS  Google Scholar 

  73. Seo HK, Ameen S, Akhtar MS, Shin HS (2013) Structural, morphological and sensing properties of layered polyaniline nanosheets towards hazardous phenol chemical. Talanta 104:219–227. https://doi.org/10.1016/j.talanta.2012.10.089

    Article  CAS  PubMed  Google Scholar 

  74. Liu P, Qiu J, Wang X, Wu X (2012) Facile preparation of polyaniline nanosheets via chemical oxidative polymerization in saturated NaCl aqueous solution for supercapacitors. Int J Electrochem Sci 7:6134–6141

    CAS  Google Scholar 

  75. Shabzendedar S, Modarresi-Alam AR, Noroozifar M, Mansouri-Torshizi H (2019) Synthesis and characterization of poly (p-aminoazobenzene) nanosheet as a new derivative of polyaniline containing azo groups under green chemistry condition and its high efficiency in solar cell. Synth Met 255:116115. https://doi.org/10.1016/j.synthmet.2019.116115

    Article  CAS  Google Scholar 

  76. Salmi T, Bouzguenda M, Gastli A, Masmoudi A (2012) Matlab/simulink based modeling of photovoltaic cell. IJRER 2:213–218

    Google Scholar 

  77. Kwong CY, Djurišić AB, Chui PC, Cheng KW, Chan WK (2004) Influence of solvent on film morphology and device performance of poly (3-hexylthiophene): TiO2 nanocomposite solar cells. Chem Phys Lett 384:372–375. https://doi.org/10.1016/j.cplett.2003.12.045

    Article  CAS  Google Scholar 

  78. Seifi M, Soh ABC, Wahab NI, Hassan MKB (2013) A comparative study of PV models in Matlab/Simulink. Int J Electr Sci Eng 7:22–27. https://doi.org/10.5281/zenodo.1331517

    Article  Google Scholar 

  79. Zhang W, Xu Y, Wang H, Xu C, Yang S (2011) Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT: PCBM bulk heterojunction polymer solar cells. Solar Energy Mater Sol Cells 95:2880–2885. https://doi.org/10.1016/j.solmat.2011.06.005

    Article  CAS  Google Scholar 

  80. Kovalenko A, Yadav RS, Pospisil J, Zmeskal O, Karashanova D, Heinrichová P, Vala M, Havlica J, Weiter M (2016) Towards improved efficiency of bulk-heterojunction solar cells using various spinel ferrite magnetic nanoparticles. Org Electron 39:118–126. https://doi.org/10.1016/j.orgel.2016.09.033

    Article  CAS  Google Scholar 

  81. Wang K, Yi C, Liu C, Hu X, Chuang S, Gong X (2015) Effects of magnetic nanoparticles and external magnetostatic field on the bulk heterojunction polymer solar cells. Sci Rep 5:9265. https://doi.org/10.1038/srep09265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. González DM, Körstgens V, Yao Y, Song L, Santoro G, Roth SV, Müller-Buschbaum P (2015) Improved power conversion efficiency of P3HT: PCBM organic solar cells by strong spin-orbit coupling-induced delayed fluorescence. Adv Energy Mater 5:1401770. https://doi.org/10.1002/aenm.201401770

    Article  CAS  Google Scholar 

  83. Wang K, Ren H, Yi C, Liu C, Wang H, Huang L, Zhang H, Karim A, Gong X (2013) Solution-processed Fe3O4 magnetic nanoparticle thin film aligned by an external magnetostatic field as a hole extraction layer for polymer solar cells. ACS Appl Mater Interfaces 5:10325–10330. https://doi.org/10.1021/am4033179

    Article  CAS  PubMed  Google Scholar 

  84. Wang K, Yi C, Hu X, Liu C, Sun Y, Hou J, Li Y, Zheng J, Chuang S, Karim A, Gong X (2014) Enhanced performance of polymer solar cells using PEDOT: PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer. ACS Appl Mater Interfaces 6:13201–13208. https://doi.org/10.1021/am503041g

    Article  CAS  PubMed  Google Scholar 

  85. Jaramillo J, Boudouris BW, Barrero CA, Jaramillo F (2015) Design of super-paramagnetic core-shell nanoparticles for enhanced performance of inverted polymer solar cells. ACS Appl Mater Interfaces 7:25061–25068. https://doi.org/10.1021/acsami.5b09686

    Article  CAS  PubMed  Google Scholar 

  86. Chen Z, Zhang L, Xu K, Yu F (2020) Pyridyl anchor-assisted photoresponsiveness of 4-(4-diethylaminophenylazo) pyridine on TiO2 surface. J Mol Struct 1205:127596. https://doi.org/10.1016/j.molstruc.2019.127596

    Article  CAS  Google Scholar 

  87. Lee W, Du G, Long SM, Epstein AJ, Shimizu S, Saitoh T, Uzawa M (1997) Charge transport properties of fully-sulfonated polyaniline. Synth Met 84:807–808. https://doi.org/10.1016/S0379-6779(96)04156-2

    Article  CAS  Google Scholar 

  88. Valaski R, Muchenski F, Mello RM, Micaroni L, Roman LS, Hümmelgen IA (2006) Sulfonated polyaniline/poly (3-methylthiophene)-based photovoltaic devices. J Solid State Electrochem 10:24–27. https://doi.org/10.1007/s10008-005-0648-8

    Article  CAS  Google Scholar 

  89. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C: Photochem Rev 15:1–20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  CAS  Google Scholar 

  90. Zhang L, Cole JM (2015) Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces 7:3427–3455. https://doi.org/10.1021/am507334m

    Article  CAS  PubMed  Google Scholar 

  91. Brogdon P, McNamara LE, Peddapuram A, Hammer NI, Delcamp JH (2016) Toward tightly bound carboxylic acid-based organic dyes for DSCs: relative TiO2 binding strengths of benzoic acid, cyanoacrylic acid, and conjugated double carboxylic acid anchoring dyes. Synth Met 222:66–75. https://doi.org/10.1016/j.synthmet.2016.03.031

    Article  CAS  Google Scholar 

  92. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4, 4’-{1, 4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull 60(5):609–616

    Article  CAS  Google Scholar 

  93. Raghu AV, Jeong HM, Kim JH, Lee YR, Cho YB, Sirsalmath K (2008) Synthesis and characterization of novel polyurethanes based on 4-{(4-hydroxyphenyl) iminomethyl} phenol. Macromol Res 16(3):194–199

    Article  CAS  Google Scholar 

  94. Mandanipour V, Noroozifar M, Modarresi-Alam AR (2016) Preparation of modified sulfonated poly (styrene divinylbenzene) with polyaniline as a new polymer electrolyte membrane for direct methanol fuel cell. Int J Electrochem Sci 11:5302–5317. https://doi.org/10.20964/2016.06.32

    Article  CAS  Google Scholar 

  95. Zujovic ZD, Gizdavic-Nikolaidis M, Kilmartin PA, Travas-Sejdic J, Cooney RP, Bowmaker GA (2005) Solid-state magnetic resonance studies of polyaniline as a radical scavenger. Appl Magn Reson 28:123. https://doi.org/10.1007/BF03166999

    Article  CAS  Google Scholar 

  96. Nand AV, Ray S, Easteal AJ, Waterhouse GI, Gizdavic-Nikolaidis M, Cooney RP, Travas-Sejdic J, Kilmartin PA (2011) Factors affecting the radical scavenging activity of polyaniline. Synth Met 161:1232–1237. https://doi.org/10.1016/j.synthmet.2011.04.010

    Article  CAS  Google Scholar 

  97. Addiego F, Mihai I, Marti D, Wang K, Toniazzo V, Ruch D (2014) Polyaniline as potential radical scavenger for ultra-high molecular weight polyethylene. Synth Met 198:196–202. https://doi.org/10.1016/j.synthmet.2014.10.020

    Article  CAS  Google Scholar 

  98. Abdulrazzaq O, Bourdo SE, Woo M, Saini V, Berry BC, Ghosh A, Biris AS (2015) Comparative aging study of organic solar cells utilizing polyaniline and PEDOT: PSS as hole transport layers. ACS Appl Mater Interfaces 7:27667–27675. https://doi.org/10.1021/acsami.5b08000

    Article  CAS  PubMed  Google Scholar 

  99. Ecker B, Nolasco JC, Pallarés J, Marsal LF, Posdorfer J, Parisi J, von Hauff E (2011) Degradation effects related to the hole transport layer in organic solar cells. Adv Funct Mater 21:2705–2711. https://doi.org/10.1002/adfm.201100429

    Article  CAS  Google Scholar 

  100. Shabzendedar S, Modarresi-Alam AR, Bahrpeyma A, Noroozifar M, Kerman K (2020) Novel conductive multi-walled polymeric nanotubes of poly (diazoaminobenzene) for single-layer polymer solar cell. React Funct Polym 149:104529. https://doi.org/10.1016/j.reactfunctpolym.2020.104529

    Article  CAS  Google Scholar 

  101. Sadegh F, Modarresi-Alam AR, Noroozifar M, Mansouri-Torshizi H (2021) Solid-state synthesis of PANI-TiO2 nanocomposite: investigation of reaction conditions, nature of oxidant and electrical properties. Express Polym Lett 15:2–15. https://doi.org/10.3144/expresspolymlett.2021.2

    Article  CAS  Google Scholar 

  102. Katore MS, Yawale SS, Yawale SP (2015) Photovoltaic study of chemically engineered nano-titanium oxide loaded polyaniline matrix of architecture ITO/titanium oxide-polyaniline/aluminum. Synth Met 209:577–582. https://doi.org/10.1016/j.synthmet.2015.09.004

    Article  CAS  Google Scholar 

  103. Han Z, Zhang J, Yang X, Zhu H, Cao W (2010) Synthesis and application in solar cell of poly (3-octylthiophene)/titania nanotubes composite. Org Electron 11:1449–1460. https://doi.org/10.1016/j.orgel.2010.06.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Iran National Science Foundation (INSF) (project number: 98014232) and grant from the Graduate Council of University of Sistan and Baluchestan.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AB: Advisor, Data curation, Validation, Writing—review, and editing. SS: Post-doc researcher, Investigation, Methodology, Validation, Writing—original draft. ARM-A: Supervisor, Conceptualization, Investigation, Methodology, Validation, Data curation, Writing original draft and review and editing. ARK: Data curation, Investigation, Methodology. Fatemeh Sadegh: Data curation, Investigation, Methodology.

Corresponding author

Correspondence to Ali Reza Modarresi-Alam.

Ethics declarations

Conflict of interest

Authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabzendedar, S., Bahrpeyma, A., Kheirkhah, A. et al. Study on the synthesis, properties, and efficiency of two new superparamagnetic nanocomposites of poly(m-aminobenzenesulfonic acid) and TiO2 in P–N junction hybrid solar cells. Polym. Bull. 79, 3395–3418 (2022). https://doi.org/10.1007/s00289-021-03986-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03986-2

Keywords

Navigation