Skip to main content
Log in

Silver nanoparticles effect on drug release of metronidazole in natural rubber latex dressing

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Natural rubber latex (NRL) from Hevea brasiliensis has shown great potential for dermal applications due to its angiogenesis capacity and biocompatibility. Metronidazole (MET) is a synthetic antibiotic used to treat various infections. However, this drug reports dangerous effects when high concentrations are administered. In this study, we used silver nanoparticles (AgNPs) in order to minimize these toxicological effects. For this, the membranes were characterized by physicochemical, molecular modeling, in vitro release and hemocompatibility assays. In the release assays, 14.25% of the MET and 27.28% of the AgNP + MET complex were released simultaneously, indicating that these nanoparticles work as drug carriers. Molecular modeling simulation helped to explain the in vitro release results, showing that AgNPs can interact more efficiently with MET molecules. Moreover, similarities in reactivity between NRL and MET suggested that some drug molecules may remain in the matrix during the release process. The membranes did not present significant hemolytic activity after 24 h of incubation. These results demonstrated that the NRL + AgNP + MET membrane can be used as a dressing in the treatment of infectious processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this research are available from the corresponding author upon reasonable request.

References

  1. Li ZZ, Tangadanchu VKR, Battini N et al (2019) Indole-nitroimidazole conjugates as efficient manipulators to decrease the genes expression of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 179:723–735. https://doi.org/10.1016/j.ejmech.2019.06.093

    Article  CAS  PubMed  Google Scholar 

  2. Rocha-Garduño G, Hernández-Martínez NA, Colín-Lozano B et al (2020) Metronidazole and secnidazole carbamates: synthesis, antiprotozoal activity, and molecular dynamics studies. Molecules 25:793. https://doi.org/10.3390/molecules25040793

    Article  CAS  PubMed Central  Google Scholar 

  3. Cutinho PF, Roy J, Anand A et al (2019) Design of metronidazole derivatives and flavonoids as potential non-nucleoside reverse transcriptase inhibitors using combined ligand- and structure-based approaches. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2019.1614094

    Article  PubMed  Google Scholar 

  4. Upadhyay A, Chandrakar P, Gupta S et al (2019) Synthesis, Biological evaluation, structure-activity relationship, and mechanism of action studies of quinoline-metronidazole derivatives against experimental visceral leishmaniasis. J Med Chem 62:5655–5671. https://doi.org/10.1021/acs.jmedchem.9b00628

    Article  CAS  PubMed  Google Scholar 

  5. Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS (2020) Anti- Giardia drug discovery: current status and gut feelings. J Med Chem 63:13330–13354. https://doi.org/10.1021/acs.jmedchem.0c00910

    Article  CAS  PubMed  Google Scholar 

  6. Olender D, Żwawiak J, Lukianchuk V et al (2009) Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents. Eur J Med Chem 44:645–652. https://doi.org/10.1016/j.ejmech.2008.05.016

    Article  CAS  PubMed  Google Scholar 

  7. Naumov RN, Panda SS, Girgis AS et al (2015) Synthesis and QSAR study of novel anti-inflammatory active mesalazine–metronidazole conjugates. Bioorg Med Chem Lett 25:2314–2320. https://doi.org/10.1016/j.bmcl.2015.04.023

    Article  CAS  PubMed  Google Scholar 

  8. Tukulula M, Sharma R-K, Meurillon M et al (2013) Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS Med Chem Lett 4:128–131. https://doi.org/10.1021/ml300362a

    Article  CAS  PubMed  Google Scholar 

  9. Patel OPS, Jesumoroti OJ, Legoabe LJ, Beteck RM (2021) Metronidazole-conjugates: a comprehensive review of recent developments towards synthesis and medicinal perspective. Eur J Med Chem 210:112994. https://doi.org/10.1016/j.ejmech.2020.112994

    Article  CAS  PubMed  Google Scholar 

  10. Hernández Ceruelos A, Romero-Quezada LC, RuvalcabaLedezma JC, López Contreras L (2019) Therapeutic uses of metronidazole and its side effects: an update. Eur Rev Med Pharmacol Sci 23:397–401. https://doi.org/10.26355/eurrev_201901_16788

    Article  PubMed  Google Scholar 

  11. Mudry MD, Martínez-Flores I, Palermo AM et al (2001) Embryolethality induced by metronidazole (MTZ) in Rattus norvegicus: MTZ: embryolethality in Rattus norvegicus. Teratog Carcinog Mutagen 21:197–205. https://doi.org/10.1002/tcm.1008

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez Ferreiro G, Cancino Badı́asLopez-Nigro LM et al (2002) DNA single strand breaks in peripheral blood lymphocytes induced by three nitroimidazole derivatives. Toxicol Lett 132:109–115. https://doi.org/10.1016/S0378-4274(02)00039-5

    Article  CAS  PubMed  Google Scholar 

  13. Talapatra SN, Dasgupta S, Guha G et al (2010) Therapeutic efficacies of Coriandrum sativum aqueous extract against metronidazole-induced genotoxicity in Channa punctatus peripheral erythrocytes. Food Chem Toxicol 48:3458–3461. https://doi.org/10.1016/j.fct.2010.09.021

    Article  CAS  PubMed  Google Scholar 

  14. Das Roy L, Giri S, Singh S, Giri A (2013) Effects of radiation and vitamin C treatment on metronidazole genotoxicity in mice. Mutat Res/Gen Toxicol Environ Mutagen 753:65–71. https://doi.org/10.1016/j.mrgentox.2013.02.001

    Article  CAS  Google Scholar 

  15. Menéndez D, Bendesky A, Rojas E et al (2002) Role of P53 functionality in the genotoxicity of metronidazole and its hydroxy metabolite. Mutat Res/Fundam Mol Mech Mutagen 501:57–67. https://doi.org/10.1016/S0027-5107(02)00012-X

    Article  Google Scholar 

  16. Al-Nahi A, Abood AH, Al-Khafaji KHA (2020) Chromosomal aberration and histopathological effect of metronidazole-induced toxicity in male rat. Med Legal Update 20:607–613. https://doi.org/10.37506/mlu.v20i2.1177

    Article  Google Scholar 

  17. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323. https://doi.org/10.7150/thno.14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ivanova N, Gugleva V, Dobreva M et al (2019) Silver nanoparticles as multi-functional drug delivery systems. In: Farrukh MA (ed) Nanomedicines, 5th edn. IntechOpen, London, pp 71–92

    Google Scholar 

  19. Burdușel A-C, Gherasim O, Grumezescu AM et al (2018) Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomater 8:681. https://doi.org/10.3390/nano8090681

    Article  CAS  Google Scholar 

  20. Neri F, Scala A, Grimato S et al (2016) Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release. J Nanopart Res 18:153. https://doi.org/10.1007/s11051-016-3467-1

    Article  CAS  Google Scholar 

  21. Guidelli ÉJ, Kinoshita A, Ramos AP, Baffa O (2013) Silver nanoparticles delivery system based on natural rubber latex membranes. J Nanopart Res 15:1536. https://doi.org/10.1007/s11051-013-1536-2

    Article  CAS  Google Scholar 

  22. Chaiyasat P, Suksawad C, Nuruk T, Chaiyasat A (2012) Preparation and characterization of nanocomposites of natural rubber with polystyrene and styrene-methacrylic acid copolymer nanoparticles. Express Polym Lett 6:511–518. https://doi.org/10.3144/expresspolymlett.2012.54

    Article  CAS  Google Scholar 

  23. Chen J, Chen S, Gao T et al (2019) A novel approach in blending natural rubber latex with siliceous earth nanoparticles. Iran Polym J 28:759–768. https://doi.org/10.1007/s13726-019-00740-4

    Article  CAS  Google Scholar 

  24. Herculano RD, Silva CP, Ereno C et al (2009) Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12:253–256. https://doi.org/10.1590/S1516-14392009000200023

    Article  CAS  Google Scholar 

  25. Hati S, Sakure A, Mandal S (2017) Impact of proteolytic Lactobacillus helveticus MTCC5463 on production of bioactive peptides derived from honey based fermented milk. Int J Pept Res Ther 23:297–303. https://doi.org/10.1007/s10989-016-9561-5

    Article  CAS  Google Scholar 

  26. Garms BC, Borges FA, de Barros NR et al (2019) Novel polymeric dressing to the treatment of infected chronic wound. Appl Microbiol Biotechnol 103:4767–4778. https://doi.org/10.1007/s00253-019-09699-x

    Article  CAS  PubMed  Google Scholar 

  27. Gemeinder JLP, de Barros NR, Pegorin GS et al (2021) Gentamicin encapsulated within a biopolymer for the treatment of Staphylococcus aureus and Escherichia coli infected skin ulcers. J Biomater Sci, Polym Ed 32:93–111. https://doi.org/10.1080/09205063.2020.1817667

    Article  CAS  Google Scholar 

  28. da Silva TV, de Barros NR, Costa-Orlandi CB et al (2020) Voriconazole-natural latex dressings for treating infected Candida spp. skin ulcers. Future Microbiol 15:1439–1452. https://doi.org/10.2217/fmb-2020-0122

    Article  CAS  PubMed  Google Scholar 

  29. Neves-Junior WFP, Ferreira M, Alves MCO et al (2006) Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Braz J Phys 36:586–591. https://doi.org/10.1590/S0103-97332006000400021

    Article  Google Scholar 

  30. Herculano RD, Guimarães SAC, Belmonte GC et al (2010) Metronidazole release using natural rubber latex as matrix. Mater Res 13:57–61. https://doi.org/10.1590/S1516-14392010000100013

    Article  CAS  Google Scholar 

  31. Herculano RD, Alencar de Queiroz AA, Kinoshita A et al (2011) On the release of metronidazole from natural rubber latex membranes. Mater Sci Eng C 31:272–275. https://doi.org/10.1016/j.msec.2010.09.007

    Article  CAS  Google Scholar 

  32. Marques L, Martinez G, Guidelli É et al (2020) Performance on bone regeneration of a silver nanoparticle delivery system based on natural rubber membrane NRL-AgNP. Coatings 10:323. https://doi.org/10.3390/coatings10040323

    Article  CAS  Google Scholar 

  33. Ereno C, Guimarães SAC, Pasetto S et al (2010) Latex use as an occlusive membrane for guided bone regeneration. J Biomed Mater Res 95A:932–939. https://doi.org/10.1002/jbm.a.32919

    Article  CAS  Google Scholar 

  34. Borges FA, de Barros NR, Garms BC et al (2017) Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. J Appl Polym Sci 134:45321. https://doi.org/10.1002/app.45321

    Article  CAS  Google Scholar 

  35. Carlos BL, Yamanaka JS, Yanagihara GR et al (2019) Effects of latex membrane on guided regeneration of long bones. J Biomater Sci, Polym Ed 30:1291–1307. https://doi.org/10.1080/09205063.2019.1627653

    Article  CAS  Google Scholar 

  36. de Barros NR, Heredia-Vieira SC, Borges FA et al (2018) Natural rubber latex biodevice as controlled release system for chronic wounds healing. Biomed Phys Eng Express 4:035026. https://doi.org/10.1088/2057-1976/aab33a

    Article  Google Scholar 

  37. Rosa SSRF, Rosa MFF, Marques MP et al (2019) Regeneration of diabetic foot ulcers based on therapy with red LED light and a natural latex biomembrane. Ann Biomed Eng 47:1153–1164. https://doi.org/10.1007/s10439-019-02220-5

    Article  CAS  PubMed  Google Scholar 

  38. Araujo MM, Massuda ET, Hyppolito MA (2012) Anatomical and functional evaluation of tympanoplasty using a transitory natural latex biomembrane implant from the rubber tree Hevea brasiliensis. Acta Cir Bras 27:566–571. https://doi.org/10.1590/S0102-86502012000800009

    Article  PubMed  Google Scholar 

  39. Zimmermann M, Raiser AG, Braga FVA et al (2008) Membranas de látex natural na herniorrafia diafragmática experimental em cães. Arq Bras Med Vet Zootec 60:1476–1483. https://doi.org/10.1590/S0102-09352008000600026

    Article  Google Scholar 

  40. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  41. Allouche A-R (2011) Gabedit-A graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  42. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  44. Domingo L, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748. https://doi.org/10.3390/molecules21060748

    Article  CAS  PubMed Central  Google Scholar 

  45. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  46. Maia RA, Ventorim G, Batagin-Neto A (2019) Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures. J Mol Model 25:228. https://doi.org/10.1007/s00894-019-4130-4

    Article  CAS  PubMed  Google Scholar 

  47. Mandú LO, Batagin-Neto A (2018) Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations. J Mol Model 24:157. https://doi.org/10.1007/s00894-018-3660-5

    Article  CAS  PubMed  Google Scholar 

  48. De Proft F, Van Alsenoy C, Peeters A et al (2002) Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 23:1198–1209. https://doi.org/10.1002/jcc.10067

    Article  CAS  PubMed  Google Scholar 

  49. Roy RK, Pal S, Hirao K (1999) On non-negativity of Fukui function indices. J Chem Phys 110:8236–8245. https://doi.org/10.1063/1.478792

    Article  CAS  Google Scholar 

  50. Estrada-Salas RE, Barrón H, Valladares AA, José-Yacamán M (2012) Exploring the surface reactivity of Ag nanoparticles with antimicrobial activity: a DFT study. Int J Quantum Chem 112:3033–3038. https://doi.org/10.1002/qua.24207

    Article  CAS  Google Scholar 

  51. Lee L-H (1991) Relevance of the hard-soft acid-base (HSAB) principle to solid adhesion. J Adhes 36:39–54. https://doi.org/10.1080/00218469108026522

    Article  CAS  Google Scholar 

  52. Onuma Y, Satake M, Ukena T et al (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37:55–65. https://doi.org/10.1016/S0041-0101(98)00133-0

    Article  CAS  PubMed  Google Scholar 

  53. Hensens OD, Goldberg IH (1989) Mechanism of activation of the antitumor antibiotic neocarzinostatin by mercaptan and sodium borohydride. J Antibiot 42:761–768. https://doi.org/10.7164/antibiotics.42.761

    Article  CAS  Google Scholar 

  54. Furini LN, Constantino CJL, Sanchez-Cortes S et al (2016) Adsorption of carbendazim pesticide on plasmonic nanoparticles studied by surface-enhanced Raman scattering. J Colloid Interface Sci 465:183–189. https://doi.org/10.1016/j.jcis.2015.11.045

    Article  CAS  PubMed  Google Scholar 

  55. Danna CS, Cavalcante DGSM, Gomes AS et al (2016) Silver nanoparticles embedded in natural rubber films: synthesis, characterization, and evaluation of in vitro toxicity. J Nanomater 2016:1–10. https://doi.org/10.1155/2016/2368630

    Article  CAS  Google Scholar 

  56. Megalai SM, Manjula P, Manonmani KN et al (2012) Metronidazole: a corrosion inhibitor for mild steel in aqueous environment. Electrochim Acta 30:395–403. https://doi.org/10.4152/pea.201206395

    Article  CAS  Google Scholar 

  57. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12:7–11. https://doi.org/10.4314/tjpr.v12i1.2

    Article  CAS  Google Scholar 

  58. Oliveira MJS, Rubira RJG, Furini LN et al (2020) Detection of thiabendazole fungicide/parasiticide by SERS: quantitative analysis and adsorption mechanism. Appl Surf Sci 517:145786. https://doi.org/10.1016/j.apsusc.2020.145786

    Article  CAS  Google Scholar 

  59. Vassallo A, Silletti MF, Faraone I, Milella L (2020) Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. J Nanomater 2020:1–31. https://doi.org/10.1155/2020/6905631

    Article  CAS  Google Scholar 

  60. Li P, Li J, Wu C et al (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917. https://doi.org/10.1088/0957-4484/16/9/082

    Article  CAS  Google Scholar 

  61. Alfarra A, Frackowiak E, Béguin F (2004) The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl Surf Sci 228:84–92. https://doi.org/10.1016/j.apsusc.2003.12.033

    Article  CAS  Google Scholar 

  62. Lewars E (2003) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics, 1st edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  63. Schaechter M, Engleberg NC, DiRita VJ, Dermody T (2013) Schaechter’s mechanisms of microbial disease, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  64. Borges FA, FilhoMiranda EDMCR et al (2015) Natural rubber latex coated with calcium phosphate for biomedical application. J Biomater Sci, Polym Ed 26:1256–1268. https://doi.org/10.1080/09205063.2015.1086945

    Article  CAS  Google Scholar 

  65. Fischer D, Li Y, Ahlemeyer B et al (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131. https://doi.org/10.1016/S0142-9612(02)00445-3

    Article  CAS  PubMed  Google Scholar 

  66. de Barros NR, Miranda MCR, Borges FA et al (2016) Oxytocin sustained release using natural rubber latex membranes. Int J Pept Res Ther 22:435–444. https://doi.org/10.1007/s10989-016-9523-y

    Article  CAS  Google Scholar 

  67. Morise BT, Chagas ALD, Barros NR et al (2019) Scopolamine loaded in natural rubber latex as a future transdermal patch for sialorrhea treatment. Int J Polym Mater Polym Biomater 68:788–795. https://doi.org/10.1080/00914037.2018.1506984

    Article  CAS  Google Scholar 

  68. Cesar MB, Borges FA, Bilck AP et al (2020) Development and characterization of natural rubber latex and polylactic acid membranes for biomedical application. J Polym Environ 28:220–230. https://doi.org/10.1007/s10924-019-01596-8

    Article  CAS  Google Scholar 

  69. Fayaz AM, Balaji K, Girilal M et al (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed: Nanotechnol Biol Med 6:103–109. https://doi.org/10.1016/j.nano.2009.04.006

    Article  CAS  Google Scholar 

  70. Marcelino MY, Borges FA, Scorzoni L et al (2021) Synthesis and characterization of gold nanoparticles and their toxicity in alternative methods to the use of mammals. J Environ Chem Eng 9:106779–106790. https://doi.org/10.1016/j.jece.2021.106779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Higher Education Improvement Coordination (CAPES), National Council for Scientific and Technological Development (CNPq) (grants numbers 470261/2012-9 and 420449/2018-3) and the São Paulo Research Foundation (FAPESP) (grants numbers 2011/17411-8 and 2014/17526-8). This research was also supported by resources supplied by the Center for Scientific Computing (NCC/Grid UNESP) of the São Paulo State University (UNESP).

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo,2011/17411-8,Rondinelli Donizetti Herculano,2014/17526-8,Rondinelli Donizetti Herculano,Conselho Nacional de Desenvolvimento Científico e Tecnológico,470261/2012-9,Rondinelli Donizetti Herculano,420449/2018-3,Augusto Batagin-Neto

Author information

Authors and Affiliations

Authors

Contributions

MCRM: Methodology, Software, Formal analysis, Resources, Data Curation, Writing—Original Draft; NCS: Conceptualization, Methodology, Software, Formal analysis, Investigation; GSPB: Formal analysis, Writing—Original Draft, Writing—Review & Editing, Visualization; RDP: Methodology, Resources; MJ: Methodology, Resources; NRB: Software, Validation, Formal analysis, Resources; FAB: Software, Validation, Formal analysis, Resources; ABN: Investigation, Resources, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization, Funding acquisition; WMS: Resources, Writing—Original Draft, Writing—Review & Editing, Visualization; RDH: Conceptualization, Resources, Writing—Original Draft, Writing—Review & Editing, Visualization, Supervision, Project administration, Funding acquisition; NBG: Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization.

Corresponding author

Correspondence to Giovana Sant’Ana Pegorin Brasil.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, M.C.R., Sato, N.C., Brasil, G.S.P. et al. Silver nanoparticles effect on drug release of metronidazole in natural rubber latex dressing. Polym. Bull. 79, 9957–9973 (2022). https://doi.org/10.1007/s00289-021-03983-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03983-5

Keywords

Navigation