Skip to main content
Log in

DFT investigation of Percyanation effect of coronene molecule: Comparative study with their Perhalogenated counterparts.

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We have investigated the structures, electronic properties, hole and electron mobilities of perfluorinated, perchlorinated and percyanated coronene molecules, using the density functional theory (DFT) and Time Dependent DFT (TDDFT) at the B3LYP-D3/6-311++G(d,p) and \(\omega\)B97XD/6-311++G(d,p) levels and Markus-Hush charge transfer theory. The calculated geometric parameters for coronene and perchlorocoronene are in good agreement with the experimental data. Our theoretical investigations have shown that B3LYP-D3 functional is suitable to well define vibrational assignments for studied molecules. The quantified effect of the complete substitution of peripheral hydrogen atoms with cyanide groups for the key properties relevant for optoelectronic and photonics such as electron affinities, ionization energies, HOMO-LUMO energies, reorganisation energies, optical absorption spectra, and electron mobilities were discussed. Compared to perfluorination and perchlorination, the percyanation of coronene considerably increases the adiabatic/vertical electron affinities (AEAs/VEAs), the electron mobilities, the HOMO-LUMO gap and reduces the LUMO energy level thus indicating an ambipolar behavior and air-stable material. We have discussed the possible implications of cyanide groups as important substitutes for the design of the new organic compounds useful in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and it supplementary information file).

References

  1. Sahoo SR, Sharma S, Sahu S (2020) A computational study of anisotropic charge transport in air-stable fluorinated benzobisbenzothiophene (FBBBT) derivatives. J Mole Model 26(1):1. https://doi.org/10.1007/s00894-019-4251-9

    Article  CAS  Google Scholar 

  2. Sanyal S, Manna AK, Pati SK (2013) Effect of imide functionalization on the electronic, optical, and charge transport properties of coronene: a theoretical study. J Phys Chem C 117(2):825. https://doi.org/10.1021/jp310362c

    Article  CAS  Google Scholar 

  3. Moon H, Zeis R, Borkent EJ, Besnard C, Lovinger AJ, Siegrist T, Kloc C, Bao Z (2004) Synthesis, crystal structure, and transistor performance of tetracene derivatives. J Am Chem Soc 126(47):15322. https://doi.org/10.1021/ja045208p

    Article  CAS  PubMed  Google Scholar 

  4. Wen SH, Li A, Song J, Deng WQ, Han KL, Goddard WA (2009) First-principles investigation of anistropic hole mobilities in organic semiconductors. J Phys Chem B 113(26):8813. https://doi.org/10.1021/jp900512s

    Article  CAS  PubMed  Google Scholar 

  5. Ji LF, Fan JX, Zhang SF, Ren AM (2017) Theoretical investigations into the charge transfer properties of thiophene \(\alpha \)-substituted naphthodithiophene diimides: excellent n-channel and ambipolar organic semiconductors. Phys Chem Chem Phys 19(21):13978. https://doi.org/10.1039/c7cp01114h

    Article  CAS  PubMed  Google Scholar 

  6. Chua LL, Zaumseil J, Chang JF, Ou EC, Ho PK, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434(7030):194. https://doi.org/10.1038/nature03376

    Article  CAS  PubMed  Google Scholar 

  7. Yin J, Chaitanya K, Ju XH (2016) Bromination and cyanation for improving electron transport performance of anthra-tetrathiophene. J Mater Res 31(3):337. https://doi.org/10.1557/jmr.2016.8

    Article  CAS  Google Scholar 

  8. Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127(7):2339. https://doi.org/10.1021/ja0461421

    Article  CAS  PubMed  Google Scholar 

  9. Geng H, Niu Y, Peng Q, Shuai Z, Coropceanu V, Brédas JL (2011) Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors. J Chem Phys 135(10):1. https://doi.org/10.1063/1.3632105

    Article  CAS  Google Scholar 

  10. Fawcett J, Trotter J (2014) The crystal and molecular structure of Coronene. Proceed Royal Soc London. Series A. Math Phys Sci 289(1418):366. https://doi.org/10.1098/rspa.1966.0017

    Article  Google Scholar 

  11. Ejuh GW, Samuel N, Fridolin TN, Marie NJ (2016) Computational determination of the electronic and nonlinear optical properties of the molecules 2-(4-aminophenyl) Quinoline, 4-(4-aminophenyl) Quinoline. Anthracene, Anthraquinone and Phenanthrene, Mater Lett 178:221. https://doi.org/10.1016/j.matlet.2016.04.097

    Article  CAS  Google Scholar 

  12. Guezguez I, Ayadi A, Ordon K, Iliopoulos K, Branzea DG, Migalska-Zalas A, Makowska-Janusik M, El-Ghayoury A, Sahraoui B (2014) Zinc induced a dramatic enhancement of the nonlinear optical properties of an Azo-based iminopyridine ligand. J Phys Chem C 118(14):7545. https://doi.org/10.1021/jp412204f

    Article  CAS  Google Scholar 

  13. Jensen L, Van Duijnen PT, Snijders JG, Chong DP (2002) Time-dependent density functional study of the static second hyperpolarizability of BB-, NN- and BN-substituted C60. Chem Phys Lett 359(5–6):524. https://doi.org/10.1016/S0009-2614(02)00739-X

    Article  CAS  Google Scholar 

  14. Naghavi SS, Gruhn T, Alijani V, Fecher GH, Felser C, Medjanik K, Kutnyakhov D, Nepijko SA, Schönhense G, Rieger R, Baumgarten M, Müllen K (2011) Theoretical study of new acceptor and donor molecules based on polycyclic aromatic hydrocarbons. J Mole Spectrosc 265(2):95. https://doi.org/10.1016/j.jms.2010.12.004

    Article  CAS  Google Scholar 

  15. Takeuchi Rudiono M (1997) Improvement of photovoltaic performance in copper phthalocyanine binder layer solar cells. Japan J Appl Phys, Part 2: Lett 36(2A):L127. https://doi.org/10.1143/jjap.36.l127

    Article  Google Scholar 

  16. Tyutyulkov N, Karabunarliev S, Müllen K, Baumgarten M (1993) Band structure of quasi-1D polycondensed hydrocarbons II. Energy spectra of ribbon polym relation to graphite, Synth Metals 53(2):205. https://doi.org/10.1016/0379-6779(93)90891-Y

    Article  CAS  Google Scholar 

  17. Friedrich J, Haarer D (1984) Photochemical hole burning: a spectroscopic study of relaxation processes in polymers and glasses. Angewandte Chemie Int Edition in English 23(2):113. https://doi.org/10.1002/anie.198401131

    Article  Google Scholar 

  18. Ekern SP, Marshall AG, Szczepanski J, Vala M (1998) Photodissociation of gas-phase polycylic aromatic hydrocarbon cations. J Phys Chem A 102(20):3498. https://doi.org/10.1021/jp980488e

    Article  CAS  Google Scholar 

  19. Choi SH (2017) Unique properties of graphene quantum dots and their applications in photonic/electronic devices. J Phys D: Appl Phys 50(10):103002. https://doi.org/10.1088/1361-6463/aa5244

    Article  CAS  Google Scholar 

  20. Richter M, Heumüller T, Matt GJ, Heiss W, Brabec CJ (2017) Carbon Photodetectors: the versatility of carbon allotropes. Adv Energy Mater 7(10):1601574. https://doi.org/10.1002/aenm.201601574

    Article  CAS  Google Scholar 

  21. Sancho-García JC, Pérez-Jiménez AJ (2014) Theoretical study of stability and charge-transport properties of coronene molecule and some of its halogenated derivatives: a path to ambipolar organic-based materials? J Chem Phys 141(13):134708. https://doi.org/10.1063/1.4897205

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Li P, Xu B, Zhang H, Tian W (2014) The substituent effect on charge transport property of triisopropylsilylethynyl anthracene derivatives. Organ Electron 15(10):2476. https://doi.org/10.1016/j.orgel.2014.07.003

    Article  CAS  Google Scholar 

  23. de Proft F, Geerlings P (2001) Conceptual and computational DFT in the study of aromaticity. Chem. Rev. 101(5):1451

    Article  Google Scholar 

  24. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184. https://doi.org/10.1021/jp0225774

    Article  CAS  Google Scholar 

  25. Arulmozhiraja S, Fujii T, Tokiwa H (2000) Electron affinity for the most toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): a density functional theory study. J Phys Chem A 104(30):7068. https://doi.org/10.1021/jp994237x

    Article  CAS  Google Scholar 

  26. Hush NS (1958) Adiabatic rate processes at electrodes. I. Energy-charge relationships. J Chem Phys 28(5):962. https://doi.org/10.1063/1.1744305

    Article  CAS  Google Scholar 

  27. Marcus RA (1993) Electron transfer reactions in chemestry. Theory and exp, Rev Modern Phys 65:599

    Article  CAS  Google Scholar 

  28. Gao H, Qin C, Zhang H, Wu S, Su ZM, Wang Y (2008) Theoretical characterization of a typical hole/exciton-blocking material bathocuproine and its analogues. J Phys Chem A 112(38):9097. https://doi.org/10.1021/jp804308e

    Article  CAS  PubMed  Google Scholar 

  29. Feller D (1996) Computational chemistry calculations. J Comput Chem 17(13):1571

    Article  CAS  Google Scholar 

  30. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inform Model 47(3):1045. https://doi.org/10.1021/ci600510j

    Article  CAS  Google Scholar 

  31. Chai MHGJ (2008) Long-range corrected hybrid density functionals with improved dispersion corrections. J Chemi Theory Comput 9(1):263. https://doi.org/10.1021/ct300715s

    Article  CAS  Google Scholar 

  32. Holtomo O, Nsangou M, Fifen JJ, Motapon O (2019) Thermodynamic of solvation, solute - Solvent electron transfer and ionization potential of BSCAPE molecule and its UV-vis spectra in aqueous solution. J Mole Graph Model 92:100. https://doi.org/10.1016/j.jmgm.2019.06.016

    Article  CAS  Google Scholar 

  33. Chen XK, Zou LY, Huang S, Min CG, Ren AM, Feng JK, Sun CC (2011) Theoretical investigation of charge injection and transport properties of novel organic semiconductor materials - Cyclic oligothiophenes. Organ Electron 12(7):1198. https://doi.org/10.1016/j.orgel.2011.03.029

    Article  CAS  Google Scholar 

  34. Datta A, Mohakud S, Pati SK (2007) Comparing the electron and hole mobilities in the \(\alpha \) and \(\beta \) phases of perylene: Role of \(\pi \)-stacking. J Mater Chem 17(19):1933. https://doi.org/10.1039/b700625j

    Article  CAS  Google Scholar 

  35. Mohakud S, Alex AP, Pati SK (2010) Ambipolar charge transport in \(\alpha \)-oligofurans: a theoretical study. J Phys Chem C 114(48):20436. https://doi.org/10.1021/jp1047503

    Article  CAS  Google Scholar 

  36. Guo Y, Wang W, Shao R, Yin S (2015) Theoretical study on the electron transport properties of chlorinated pentacene derivatives. Comput Theoretical Chem 1057:67. https://doi.org/10.1016/j.comptc.2015.01.019

    Article  CAS  Google Scholar 

  37. Carmen Ruiz Delgado M, Kim EG, Da Silva Filho DA, Bredas JL (2010) Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: a density functional theory investigation. J Am Chem Soc 132(10):3375. https://doi.org/10.1021/ja908173x

    Article  CAS  PubMed  Google Scholar 

  38. Song P, Fengcai M (2010) Tunable electronic structures and optical properties of fluorenone-based molecular materials by heteroatoms. J Phys Chem A 114(5):2230. https://doi.org/10.1021/jp909594e

    Article  CAS  PubMed  Google Scholar 

  39. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H et al (2016) Gaussian 16

  40. Brown Js, (2018). catnip (version 1.9). [software]. available from https://github.com/joshuasbrown/qc_tools

  41. Valeev EF, Coropceanu V, Da Silva Filho DA, Salman S, Brédas JL (2006) Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J Am Chem Soc 128(30):9882. https://doi.org/10.1021/ja061827h

    Article  CAS  PubMed  Google Scholar 

  42. Baumeier B, Kirkpatrick J, Andrienko D (2010) Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys Chem Chem Phys 12(36):11103. https://doi.org/10.1039/c002337j

    Article  CAS  PubMed  Google Scholar 

  43. Baird T, Gall JH, MacNicol DD, Mallinson PR, Michie CR (1988) Perchlorocoronene: a novel host precursor. J Chem Soc, Chem Commun 22:1471. https://doi.org/10.1039/C39880001471

    Article  Google Scholar 

  44. Erkoç S, Erkoç F, Türker L (2000) Structural and electronic properties of halogenated coronene. J Mole Struct 538(1–3):91. https://doi.org/10.1016/S0166-1280(00)00651-5

    Article  Google Scholar 

  45. Zhao C, Guo Y, Guan L, Ge H, Yin S, Wang W (2014) Theoretical investigation on charge transport parameters of two novel heterotetracenes as ambipolar organic semiconductors. Synthetic Metals 188:146. https://doi.org/10.1016/j.synthmet.2013.12.009

    Article  CAS  Google Scholar 

  46. Yin J, Chaitanya K, Ju XH (2015) Structures and charge transport properties of selenosulflower and its selenium analogue selflower: computer-aided design of high-performance ambipolar organic semiconductors. J Mater Chem C 3(14):3472. https://doi.org/10.1039/c4tc02655a

    Article  CAS  Google Scholar 

  47. Chen L, Xu C, Zhang XF (2008) DFT calculations of vibrational spectra and nonlinear optical properties for MgO nanotube clusters. J Mole Struct: THEOCHEM 863(1–3):55. https://doi.org/10.1016/j.theochem.2008.05.020

    Article  CAS  Google Scholar 

  48. Jamróz MH (2013) Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochimica Acta - Part A: Mole Biomol Spectrosc 114:220. https://doi.org/10.1016/j.saa.2013.05.096

    Article  CAS  Google Scholar 

  49. Zhang SF, Chen XK, Fan JX, Ren AM (2013) Charge transport properties in a series of five-ring-fused thienoacenes: a quantum chemistry and molecular mechanic study. Organ Electron 14(2):607. https://doi.org/10.1016/j.orgel.2012.12.001

    Article  CAS  Google Scholar 

  50. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  51. Wang L, Huang W, Li R, Gehrig D, Blom PW, Landfester K, Zhang KA (2016) Structural design principle of small-molecule organic semiconductors for metal-free. Visible-Light-Promoted Photocatal, Angewandte Chemie - Int Edition 55(33):9783. https://doi.org/10.1002/anie.201603789

    Article  CAS  Google Scholar 

  52. Saranya G, Navamani K, Senthilkumar K (2014) A theoretical study on optical and charge transport properties of anthra-[1,2-b:4,3-b...:5,6-b...:8,7-bâ] tetrathiophene molecules. Chem Phys 433:48. https://doi.org/10.1016/j.chemphys.2014.01.020

    Article  CAS  Google Scholar 

  53. Adiga SP, Shukla D (2010) Electronic structure and charge-transport properties of N, N-Bis(cyclohexyl)naphthalene Diimide. J Phys Chem 114:2751

    CAS  Google Scholar 

  54. Schroeder PG, France CB, Parkinson BA, Schlaf R (2002) Orbital alignment at p-sexiphenyl and coronene/layered materials interfaces measured with photoemission spectroscopy. J Appl Phys 91(11):9095. https://doi.org/10.1063/1.1473217

    Article  CAS  Google Scholar 

  55. Duncan MA, Knight AM, Negishi Y, Nagao S, Nakamura Y, Kato A, Nakajima A, Kaya K (1999) Production of jet-cooled coronene and coronene cluster anions and their study with photoelectron spectroscopy. Chem Phys Lett 309(1–2):49. https://doi.org/10.1016/S0009-2614(99)00662-4

    Article  CAS  Google Scholar 

  56. Shi Y, Shi Y, Wei H, Zhai H, Liu Y (2017) A theoretical study on the electronic properties of two ring-fused derivatives of 9,10-diphenylanthracene. New J Chem 41(18):10251. https://doi.org/10.1039/c7nj02590d

    Article  CAS  Google Scholar 

  57. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  58. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  59. Hudgins DM, Sandford SA (2000) Infrared spectroscopy of matrix isolated polycyclic aromatic hydrocarbons. 2. PAHs Containing Five or. More Rings 5639(98):344

    Google Scholar 

  60. Patterson JW (1942) The ultraviolet absorption spectra of coronene. J Am Chem Soc 64(6):1485. https://doi.org/10.1021/ja01258a505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Center for High Performance Computing (CHPC), South Africa, for granting them access to their clusters and computational resources.

Funding

No funds or grants were received.

Author information

Authors and Affiliations

Authors

Contributions

Marius Bouba Ousmanou: conceptualization; investigation; methodology; formal analysis; writing-original draft. Fridolin Tchangnwa Nya: conceptualization; investigation; methodology; writing-review and editing; supervision. Alhadji Malloum: writing-review and editing. Jeanet Conradie: writing-review and editing. Jean Marie Ndjaka: writing-review and editing.

Corresponding author

Correspondence to Fridolin Tchangnwa Nya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies involving animals performed by any of the author.

Consent to participate

All the co-authors consent to participate.

Consent to publish

All the co-authors consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouba, M.O., Tchangnwa Nya, F., Malloum, A. et al. DFT investigation of Percyanation effect of coronene molecule: Comparative study with their Perhalogenated counterparts.. Polym. Bull. 79, 9663–9684 (2022). https://doi.org/10.1007/s00289-021-03967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03967-5

Keywords

Navigation