Skip to main content
Log in

The new generation fibers: a review of high performance and specialty fibers

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The current situation of the textile fibers has been on a great deal for scientific applications and environmental concerns. Transformations have been taken place due to the need of improved properties in the new age group end requests. Textile fiber polymers will bring about a revolution as they have started replacing the metals and will make the bright future due to the various research and development activities of the world. The main thrust has been in nano-technologies applied to textiles and clothing to improve the properties and performance of existing materials. Overall, this review has covered the most prominent new polymeric fibers in the next generation especially biodegradable fibers, high-performance application fibers, and the nano technology and its impact on the next generation fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mishra S, Rath CC, Das AP (2019) Marine microfiber pollution: a review on present status and future challenges. Marine Pollut Bull 140:188–197

    CAS  Google Scholar 

  2. Yanagisawa H, Wagenseil J (2020) Elastic fibers and biomechanics of the aorta: insights from mouse studies. Matrix Biol 85:160–172

    PubMed  Google Scholar 

  3. Wan M, Li S-E, Yuan H, Zhang W-H (2019) Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): a review. Compos Part A: Appl Sci Manuf 117:34–55

    CAS  Google Scholar 

  4. Choi D, Kil H-S, Lee S (2019) Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon 142:610–649

    CAS  Google Scholar 

  5. Shukla SK, Kushwaha CS, Guner T, Demir MM (2019) Chemically modified optical fibers in advanced technology: an overview. Opt Laser Technol 115:404–432

    CAS  Google Scholar 

  6. Sakr H, Hussein RA, Hameed MFO, Obayya SSA (2019) Analysis of photonic crystal fiber with silicon core for efficient supercontinuum generation. Optik 182:848–857

    CAS  Google Scholar 

  7. Yang H, Huang W, Jiao S, Sun X, Hong W, Qiao LJO (2019) "Temperature independent polarization-maintaining photonic crystal fiber with regular pentagon air hole distribution. Optik 185:390–396

    CAS  Google Scholar 

  8. Holdynski Z, Napierala M, Jozwik M, Szostkiwicz L, Mergo P, Nasilowski T (2017) "Three fold symmetric microstructured fibers for customized sub-nanosecond supercontinuum generation. Opt Commun 393:45–48

    CAS  Google Scholar 

  9. Wang WC, Zhou B, Xu SH, Yang ZM, Zhang QY (2019) Recent advances in soft optical glass fiber and fiber lasers. Prog Mater Sci 101:90–171

    CAS  Google Scholar 

  10. Justin AW, Saeb-Parsy K, Markaki AE, Vallier L, Sampaziotis F (2018) Advances in the generation of bioengineered bile ducts. Biochim et Biophys Acta (BBA) - Mol Basis Dis 1864(4):1532–1538

    CAS  Google Scholar 

  11. Guner T, Aksoy E, Demir MM, Varlikli C (2019) Perylene-embedded electrospun PS fibers for white light generation. Dyes Pigment 160:501–508

    CAS  Google Scholar 

  12. Ravichandran G, Lakshmanan DK, Raju K, Elangovan A, Nambirajan G, Devanesan AA, Thilagar S (2019) Food advanced glycation end products as potential endocrine disruptors: an emerging threat to contemporary and future generation. Environ Int 123:486–500

    CAS  PubMed  Google Scholar 

  13. Knebl A, Yan D, Popp J, Frosch T (2018) Fiber enhanced Raman gas spectroscopy. TrAC Trends Anal Chem 103:230–238

    CAS  Google Scholar 

  14. Dutta D, Paul MC, Dhar A, Das S, Rusdi MFM, Latiff AA, Ahmad H, Harun SW (2019) Newly developed chromium-doped fiber as a saturable absorber at 1.55-and 2.0-µm regions for Q-switching pulses generation. Opt Fiber Technol 48:144–150

    CAS  Google Scholar 

  15. Im SH, Jung Y, Kim SH (2017) Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater 60:3–22

    CAS  PubMed  Google Scholar 

  16. Ravichandran G, Lakshmanan DK, Raju K, Elangovan A, Nambirajan G, Devanesan AA, Thilagar S (2019) Food advanced glycation end products as potential endocrine disruptors: an emerging threat to contemporary and future generation. Environ Int 123:486–500

    CAS  PubMed  Google Scholar 

  17. Jakobsdottir G, Nyman M, Fåk F (2014) Designing future prebiotic fiber to target metabolic syndrome. Nutrition 30(5):497–502

    CAS  PubMed  Google Scholar 

  18. Yimin QIN (2007) Production method of seacell fibers. J Text Res 28(10):l22-123

    Google Scholar 

  19. Thangavelu K, Subramani KB (2016) Sustainable biopolymer fibers—Production, properties and applications, Sustainable fibres for fashion industry. Springer, pp. 109–140.

  20. Brinsko KM (2010) Optical characterization of some modern “eco-friendly” fibers. J Forensic Sci 55(4):915–923

    PubMed  Google Scholar 

  21. Bedeloglu A, Demir A, Bozkurt Y, Sariciftci NS (2010) A photovoltaic fiber design for smart textiles. Text Res J 80(11):1065–1074

    CAS  Google Scholar 

  22. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H (2019) Advanced functional fiber and smart textile. Adv Fiber Mater 1(1):3–31

    Google Scholar 

  23. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53

    Google Scholar 

  24. Belino N, Fangueiro R, Rana S, Glampedaki P, Priniotakis G (2019) Medical and healthcare textiles. Wiley, Chichester, pp 69–105

    Google Scholar 

  25. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly (lactic acid)(PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12(3):523–532

    CAS  PubMed  Google Scholar 

  26. Pang X, Zhuang X, Tang Z, Chen X (2010) Polylactic acid (PLA): research, development and industrialization. Biotechnol J 5(11):1125–1136

    CAS  PubMed  Google Scholar 

  27. Ruan G, Feng SS (2003) Preparation and characterization of poly (lactic acid)–poly (ethylene glycol)–poly (lactic acid)(PLA–PEG–PLA) microspheres for controlled release of paclitaxel. Biomaterials 24(27):5037–5044

    CAS  PubMed  Google Scholar 

  28. Sin LT, Rahmat AR, Rahman, WAWA (2012) Polylactic acid: PLA biopolymer technology and applications. William Andrew.

  29. Avinc O, Khoddami A (2010) Overview of poly (lactic acid)(PLA) fibre. Fibre Chem 42(1):68–78

    CAS  Google Scholar 

  30. Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. Polysacch Polyam Food Indus Prop Prod Pat, 31–84.

  31. Esa F, Tasirin SM, Abd Rahman N (2014) Overview of bacterial cellulose production and application. Agr Agr Sci Proc 2:113–119

    Google Scholar 

  32. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611

    CAS  PubMed  Google Scholar 

  33. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    CAS  Google Scholar 

  34. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8

    CAS  PubMed  Google Scholar 

  35. Hänggi UJ (1995) Requirements on bacterial polyesters as future substitute for conventional plastics for consumer goods. FEMS Microbiol Rev 16(2–3):213–220

    Google Scholar 

  36. Chen GGQ (2009). Plastics from bacteria: natural functions and applications, Springer Science & Business Media.

  37. Marois Y, Zhang Z, Vert M, Deng X, Lenz RW, Guidoin R (2000) "Bacterial Polyesters for Biomedical Applications: In vitro and in vivo assessments of sterilization, degradation rate and biocompatibility of poly (β-hydroxyoctanoate)(PHO)", Synthetic bioabsorbable polymers for implants. ASTM International.

  38. Geller BE (1996) Bacterial polyesters. Synthesis properties and application. Russian Chem Rev 65(8):725

    Google Scholar 

  39. Kanuparti RS, Hayavadana J Spider silk: the network of Fibre.

  40. Rijavec T, Bukošek V (2009) Novel fibres for the 21st Century. Tekstilec 52:312–327

    CAS  Google Scholar 

  41. Sponner A (2007) Spider silk as a resource for future biotechnologies. Entomol Res 37(4):238–250

    Google Scholar 

  42. Rani A, Gahlot M, Mittal I (2007) New generation protein fibres: soy protein fibre and spider silk. Man-Made Text India 50(3).

  43. Mu Y (2001) Consideration and suggestion about development & application of soybean protein fiber [J]. Cotton Text Technol 9.

  44. Zhang Y, Ghasemzadeh S, Kotliar AM, Kumar S, Presnell S, Williams LD (1999) Fibers from soybean protein and poly (vinyl alcohol). J Appl Polym Sci 71(1):11–19

    CAS  Google Scholar 

  45. Boyer RA (1940) Soybean protein fibers experimental production. Indus Eng Chem 32(12):1549–1551

    CAS  Google Scholar 

  46. Mingjie SDL (2001) Research of spinning process of soybean protein fiber [J]. Cotton Texy Technol 9.

  47. Zhang X, Min BG, Kumar S (2003) Solution spinning and characterization of poly (vinyl alcohol)/soybean protein blend fibers. J Appl Polym Sci 90(3):716–721

    CAS  Google Scholar 

  48. Qingbin Y, Weidong Y (2004) The issues in processing and application of soybean protein fiber. China Text Leader 06.

  49. Afshari M, Sikkema DJ, Lee K, Bogle M (2008) High performance fibers based on rigid and flexible polymers. Polym Rev 48(2):230–274

    CAS  Google Scholar 

  50. Kozey VV, Jiang H, Mehta VR, Kumar S (1995) Compressive behavior of materials: Part II. High performance fibers. J Mater Res 10(4):1044–1061

    CAS  Google Scholar 

  51. Naaman AE (2007) High performance fiber reinforced cement composites: classification and applications. In: CBM-CI international workshop, Karachi, Pakistan (pp. 389–401).

  52. Meulman JH, van der Werf H, Chabba S, Vunderink A (2010) Ballistic performance of Dyneema® at elevated temperatures, extreme for body armor. In: PASS conference papers.

  53. Elkarem AH A study on dyneema fabric for soft body armor.

  54. Fujii HA, Kruijff M, van der Heide EJ, Watanabe T (2010) The second young engineers' satellite: innovative technology through education. Trans Japan Soc Aeronaut Space Sci Aerosp Technol Japan 8(ists27), pp.Tg_11-Tg_17.

  55. Chaudhari SS, Chitnis RS, Ramkrishnan R (2004) Waterproof breathable active sports wear fabrics. Man-Made Text India 5:166–171

    Google Scholar 

  56. Suzuki T, Ishimaru S (2016). "Moisture and water control man-made fibers", High-Performance Specialty Fibers, Springer, pp. 247–260.

  57. Agarwal G Engineered fibres & fabrics for active sportswear.

  58. Sharma V, Goel A (2007) Latest advances in clothing physiology. Man-Made Textiles in India 50(3).

  59. Yehia S, Farrag S, Abdelghaney O (2019) Performance of fiber-reinforced lightweight self-consolidating concrete exposed to wetting-and-drying cycles in salt water. ACI Mater J. https://doi.org/10.14359/51716976

    Article  Google Scholar 

  60. Cassady AI, Hidzir NM, Grøndahl L (2014) Enhancing expanded poly (tetrafluoroethylene)(ePTFE) for biomaterials applications. J Appl Polym Sci. https://doi.org/10.1002/app.40533

    Article  Google Scholar 

  61. Aumsuwan N, Danyus RC, Heinhorst S, Urban MW (2008) Attachment of ampicillin to expanded poly (tetrafluoroethylene): surface reactions leading to inhibition of microbial growth. Biomacromolecules 9(7):1712–1718

    CAS  PubMed  Google Scholar 

  62. Moby V, Boura C, Kerdjoudj H, Voegel JC, Marchal L, Dumas D, Schaaf P, Stoltz JF, Menu P (2007) Poly (styrenesulfonate)/poly (allylamine) multilayers: a route to favor endothelial cell growth on expanded poly (tetrafluoroethylene) vascular grafts. Biomacromolecules 8(7):2156–2160

    CAS  PubMed  Google Scholar 

  63. Almetwally AA, El-Sakhawy M, Elshakankery MH, Kasem MH (2017) Technology of nano-fibers: production techniques and properties-Critical review. J Text Assoc 78(1):5–14

    Google Scholar 

  64. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997

    CAS  PubMed  Google Scholar 

  65. Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147

    CAS  PubMed  Google Scholar 

  66. Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10(1):1–22

    CAS  Google Scholar 

  67. Jayathilaka WADM, Qi K, Qin Y, Chinnappan A, Serrano-García W, Baskar C, Wang H, He J, Cui S, Thomas SW, Ramakrishna S (2019) Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater 31(7):1805921

    Google Scholar 

  68. Grimsdale AC, Müllen K (2005) The chemistry of organic nanomaterials. Angewandte Chem Int Ed 44(35):5592–5629

    CAS  Google Scholar 

  69. Raaijmakers MJT, Benes NE (2016) Current trends in interfacial polymerization chemistry. Prog Polym Sci 63:86–142

    CAS  Google Scholar 

  70. Alig I, Steinhoff B, Lellinger D (2010) Monitoring of polymer melt processing. Measure Sci Technol 21(6):062001

    Google Scholar 

  71. Wan Y-Q, Guo Q, Pan N (2004) Thermo-electro-hydrodynamic model for electrospinning process. Int J Nonlinear Sci Numer Simul 5(1):5–8

    Google Scholar 

  72. Pokorny M, Novak J, Rebicek J, Klemes J, Velebny V (2015) An Electrostatic spinning technology with improved functionality for the manufacture of nanomaterials from solutions. Nanomater Nanotechnol 5:17

    Google Scholar 

  73. Gironès J, López JP, Mutjé P, Carvalho AJF, Curvelo AAS, Vilaseca F (2012) Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos Sci Technol 72(7):858–863

    Google Scholar 

  74. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330(3–4):219–225

    CAS  Google Scholar 

  75. Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45(22):7597–7603

    CAS  Google Scholar 

  76. Hufenus R, Yan Y, Dauner M, Kikutani T (2020) Melt-spun fibers for textile applications. Materials 13(19):4298

    CAS  PubMed Central  Google Scholar 

  77. Hardman SJ, Muhamad-Sarih N, Riggs HJ, Thompson RL, Rigby J, Bergius WNA, Hutchings LR (2011) Electrospinning superhydrophobic fibers using surface segregating end-functionalized polymer additives. Macromolecules 44(16):6461–6470

    CAS  Google Scholar 

  78. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044

    CAS  PubMed  Google Scholar 

  79. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) "Methods for carbon nanotubes synthesis. J Mater Chem 21(40):15872–15884

    CAS  Google Scholar 

  80. Krzempek K, Dudzik G, Hudzikowski A, Gluszek A, Abramski K (2017) Highly-efficient fully-fiberized mid-infrared differential frequency generation source and its application to laser spectroscopy. Opto-Electro Rev 25(4):269–274

    Google Scholar 

  81. Jiang B, Zheng J, Qiu S, Mingbo W, Zhang Q, Yan Z, Xue Q (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belete Baye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baye, B., Tesfaye, T. The new generation fibers: a review of high performance and specialty fibers. Polym. Bull. 79, 9221–9235 (2022). https://doi.org/10.1007/s00289-021-03966-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03966-6

Keywords

Navigation