Skip to main content

Advertisement

Log in

Recyclable palladium-catalyzed synthesis of new cardo poly(amide-imide)s from diiodo imides, aromatic diamines containing cardo groups, and carbon monoxide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

High molecular weight poly(amide-imide)s containing cardo structures were readily prepared by a supported palladium-catalyzed carbonylation polymerization of diiodo imide monomers, aromatic diamines containing cardo groups, and carbon monoxide. Polycondensation reaction proceeded effectively in N,N-dimethylacetamide (DMAc) at 100 °C in the presence of a bidentate phosphino-modified magnetic nanoparticles-anchored palladium complex [2P-Fe3O4@SiO2-PdCl2] as catalyst and 1,8-diazabicyclo[5,4,0]-7-undecene (DBU) as base under 1 atm of CO, yielding a series of new poly(amide-imide)s with inherent viscosities up to 0.95 dL/g. All the polymers obtained were easily soluble in some strong polar aprotic organic solvents and could be cast into transparent, flexible and tough films from their DMAc solutions. These cardo poly(amide-imide)s displayed high thermal stability with the glass transition temperatures ranging from 237 to 265 °C, the temperatures at 5% weight loss ranging from 433 to 475 °C in nitrogen. These PAI films also exhibited good mechanical behavior and high optical transparency. The present method provides the flexibility of incorporating different ratios of imide and amide groups in the polymer backbone in a controlled manner and eliminates the possibility of postpolymerization curing due to the imide moiety being preformed. Importantly, the supported palladium catalyst can be conveniently separated from the polymer by simply using an external magnetic field and recycled at least 8 times without apparent loss of catalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Imai Y (1996) In: Ghosh MK, Mittal KL (eds) Synthesis of polyamideimides in polyimide: fundamentals and applications. Marcel Dekker, New York, pp 49–70

  2. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: Syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    Article  CAS  Google Scholar 

  3. Ding M (2007) Isomeric polyimides. Prog Polym Sci 32:623–668

    Article  CAS  Google Scholar 

  4. Stoakley DM, Clair AKS, Croall CI (1994) Low dielectric, fluorinated polyimide copolymers. J Appl Polym Sci 51:1479–1483

    Article  CAS  Google Scholar 

  5. Copeland SD, Seferis JC, Carrega M (1992) Processing of poly(amide imides) as matrices for high-performance composites. J Appl Polym Sci 44:41–53

    Article  CAS  Google Scholar 

  6. Dodda MJ, Belsky P (2016) Progress in designing poly(amide imide)s (PAI) in terms of chemical structure, preparation methods and processability. Eur Polym J 84:514–537

    Article  CAS  Google Scholar 

  7. Arrington CB, Rau DA, Williams CB, Long TE (2021) UV-assisted direct ink write printing of fully aromatic Poly(amide imide)s: Elucidating the influence of an acrylic scaffold. Polymer 212:123306(1)-123306(8)

    Article  Google Scholar 

  8. Imai Y, Malder NN, Kakimoto M (1985) Synthesis and characterization of aromatic polyamide-imides from 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene and 4-chloroformylphthalic anhydride. J Polym Sci Polym Chem Ed 23:2077–2080

    Article  CAS  Google Scholar 

  9. Kakimoto M, Akiyama R, Negi YS, Imai Y (1988) Synthesis and characterization of aromatic polyimide and polyamide-imide from 2,5-bis(4-isocyanatophenyl)-3,4-diphenylthiophene and aromatic tetra- and tricarboxylic acids. J Polym Sci Part A Polym Chem 26:99–105

    Article  CAS  Google Scholar 

  10. Ray A, Rao YV, Bhattacharya VK, Maiti S (1983) Syntheis of polyamide-imides containing ether and sulfonamide groups. Polym J 15:169–173

    Article  CAS  Google Scholar 

  11. dela Campa JG, De Abajo J, Nieto JL (1982) Aliphatic-aromatic polyamide-imides from diisocyanates, 2. Study of the influence of the reaction conditions on polymer structure. Makromol Chem 183:571–578

    Article  CAS  Google Scholar 

  12. Hsiao SH, Yang CP (1991) Preparation of polyamide-imides by direct polycondensation with triphenyl phosphite. V. Aliphatic-aromatic polyamide-imides based on N, N′-bis(ω-carboxyalkyl)benzophenon,3′,4,4′-tetracarboxylic diimides. J Polym Sci Part A Polym Chem 29:447–452

    Article  CAS  Google Scholar 

  13. Hsiao SH, Yang CP (1990) Preparation of polyamide-imides via the phosphorylation reaction. II. Synthesis of wholly aromatic polyamide-imides from N-[p-(or m-)carboxyphenyl]trimellitimides and various aromatic diamines. J Polym Sci Part A Polym Chem 28:1149–1159

    Article  CAS  Google Scholar 

  14. Yang CP, Wei CS (2001) Synthesis and properties of soluble alternating copoly(amide-imide)s based on 1,2-bis(4-trimellitimidophenoxy)-4-t-butylbenzene and various aromatic diamines. Polymer 42:1837–1848

    Article  CAS  Google Scholar 

  15. Wang HM, Hsiao SH (2010) Multicolor electrochromic poly(amide-imide)s with N, N-diphenyl-N′, N′-d-tert-butylpheny,4-phenylenediamine moieties. Polym Chem 1:1013–1023

    Article  CAS  Google Scholar 

  16. Li W, Qian X, Shi H, Zhou W, Cai Y, Liu Y, Shen K (2017) Synthesis and properties of novel soluble poly(amide-imide)s with different pendant substituents. J Polym Sci Part A Polym Chem 55:3243–3252

    Article  CAS  Google Scholar 

  17. Lee B, Kim SD, Park J, Byun T, Kim SJ, Seo M, Kim SY (2018) Transparent poly(amide-imide)s containing trifluoromethyl groups with high glass transition temperature. J Polym Sci Part A Polym Chem 56:1782–1786

    Article  CAS  Google Scholar 

  18. Yoneyama M, Kakimoto M, Imai Y (1988) Novel synthesis of aromatic polyamides by palladium-catalyzed polycondensation of aromatic dibromides, aromatic diamines, and carbon monoxide. Macromolecules 21:1908–1911

    Article  CAS  Google Scholar 

  19. Yoneyama M, Kakimoto M, Imai Y (1989) Synthesis of aliphatic-aromatic polyamides by palladium-catalyzed polycondensation of aliphatic diamines, aromatic dibromides, and carbon monoxide. J Polym Sci Part A Polym Chem 27:1985–1991

    Article  CAS  Google Scholar 

  20. Turner SR, Perry RJ, Blevins RW (1992) High molecular weight aromatic polyamides from aromatic diiodides and diamines. Macromolecules 25:4819–4820

    Article  CAS  Google Scholar 

  21. Perry RJ, Turner SR, Blevins RW (1993) Synthesis of linear, high molecular weight aromatic polyamides by the palladium-catalyzed carbonylation and condensation of aromatic diiodides, diamines, and carbon monoxide. Macromolecules 26:1509–1513

    Article  CAS  Google Scholar 

  22. Ueda M, Yokoo T (1994) Synthesis of poly(ether-ketone-amide)s by palladium-catalyzed polycondensation of aromatic dibromides containing ether ketone structure, aromatic diamines, and carbon monoxide. J Polym Sci Part A Polym Chem 32:2065–2071

    Article  CAS  Google Scholar 

  23. Ueda M, Yokoo T, Nakamura T (1994) Synthesis of poly(ether-sulfone-amide)s by palladium-catalyzed polycondensation of aromatic dibromides containing ether sulfone structure, aromatic diamines, and carbon monoxide. J Polym Sci Part A Polym Chem 32:2989–2995

    Article  CAS  Google Scholar 

  24. Rabani G, Kraft A (2002) Synthesis of poly(ether-esteramide) elastomers by palladium-catalyzed polycondensation of aromatic diiodides with telechelic diamines and carbon monoxide. Macromol Rapid Commun 23:375–379

    Article  CAS  Google Scholar 

  25. Perry RJ, Turner SR, Blevins RW (1994) Palladium-catalyzed formation of poly(imide-amides). 1. Reactions with diiodo imides and diamines. Macromolecules 27:4058–4062

    Article  CAS  Google Scholar 

  26. Perry RJ, Turner SR, Blevins RW (1995) Palladium-catalyzed formation of poly(imide-amides). 2 Reactions with chloroiodophthalimides and diamines. Macromolecules 28:2607–2610

    Article  CAS  Google Scholar 

  27. Krebs FC, Nyberg RB (2004) Influence of residual catalyst on the properties of conjugated polyphenylenevinylene materials: palladium nanoparticles and poor electrical performance. Chem Mater 16:1313–1318

    Article  CAS  Google Scholar 

  28. Nielsen KT, Bechgaard K, Krebs FC (2005) Removal of palladium nanoparticles from polymer materials. Macromolecules 38:658–659

    Article  CAS  Google Scholar 

  29. Alemdaroglu FE, Alexander SC, Ji D, Prusty DK, Borsch M, Herrmann A (2009) Poly(BODIPY)s: a new class of tunable polymeric dyes. Macromolecules 42:6529–6536

    Article  CAS  Google Scholar 

  30. Jiang Y, Okamoto T, Becerril HA, Hong S, Tang ML, Mayer AC, Parmer JE, McGehee MD, Bao Z (2010) Anthradithiophene-containing copolymers for thin-film transistors and photovoltaic cells. Macromolecules 43:6361–6367

    Article  CAS  Google Scholar 

  31. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nanocatalysts. Chem Rev 114:6949–6985

    Article  CAS  PubMed  Google Scholar 

  32. Baruwati B, Guin D, Manorama SV (2007) Pd on surface-modified NiFe2O4 nanoparticles: A magnetically recoverable catalyst for Suzuki and Heck reaction. Org Lett 9:5377–5380

    Article  CAS  PubMed  Google Scholar 

  33. Jin M-J, Lee D-H (2010) A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew Chem Int Ed 49:1119–1122

    Article  CAS  Google Scholar 

  34. Shylesh S, Wang L, Thiel WR (2010) Palladium(II)-phosphine complexes supported on magnetic nanoparticles: filtration-free, recyclable catalysts for Suzuki-Miyaura cross-coupling reactions. Adv Synth Catal 352:425–432

    Article  CAS  Google Scholar 

  35. Li P, Wang L, Zhang L, Wang G-W (2012) Magnetic nanoparticles-supported palladium: A highly efficient and reusable catalyst for the Suzuki, Sonogashira, and Heck reactions. Adv Synth Catal 354:1307–1318

    Article  CAS  Google Scholar 

  36. Zhang L, Li P, Liu C, Yang J, Wang M, Wang L (2014) A highly efficient and recyclable Fe3O4 magnetic nanoparticle immobilized palladium catalyst for the direct arylation of indoles with arylboronic acids. Catal Sci Technol 4:1979–1988

    Article  CAS  Google Scholar 

  37. Tang H, Huang B, Zhu X, Cai M (2018) Synthesis of poly(ether ketone amide)s containing 4-aryl-2,6-diphenylpyridine moieties by a heterogeneous palladium-catalyzed polycondensation of aromatic diiodides, aromatic diamines, and carbon monoxide. Polym Adv Technol 29:2204–2215

    Article  CAS  Google Scholar 

  38. Liu L, Zou F, Zhang R, Cai M (2019) Synthesis of new fluorinated aromatic poly(ether ketone amide)s containing cardo structures by a heterogeneous palladium-catalyzed carbonylative polycondensation. Polym Adv Technol 30:58–69

    Article  CAS  Google Scholar 

  39. Yang CP, Su YY, Hsu MY (2006) Synthesis and properties of fluorinated polyamides and poly(amide imide)s based on 9,9-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]fluorene, aromatic dicarboxylic acids, and various monotrimellitimides and bistrimellitimides. Colloid Polym Sci 284:990–1000

    Article  CAS  Google Scholar 

  40. Hu Z, Li S, Zhang C (2007) Synthesis and properties of polyamide-imides containing fluorenyl cardo structure. J Appl Polym Sci 106:2494–2501

    Article  CAS  Google Scholar 

  41. Sheng S-R, Ma C-X, Jiang J-W, Li Q, Song C-S (2011) Optically high transparency and light color of organosoluble fluorinated polyamides with bulky xanthene pendent groups. Polym Adv Technol 22:2523–2532

    Article  CAS  Google Scholar 

  42. Sheng S, Li T, Jiang J, He W, Song C (2010) Synthesis and properties of novel polyamides containing sulfone-ether linkages and xanthene cardo groups. Polym Int 59:1014–1020

    Article  CAS  Google Scholar 

  43. Zou F, Huang B, Liu L, Cai M (2020) Synthesis of cardo poly(arylene ether ketone amide)s by heterogeneous palladium-catalyzed polycondensation of aromatic diiodides, aromatic diamines containing cardo groups and CO. Polym Bull 77:1983–2001

    Article  CAS  Google Scholar 

  44. Liaw DJ, Liaw BY, Yu CW (2000) Synthesis and characterization of new soluble cardo polyamide-imides containing cyclododecyl groups. J Polym Sci Part A Polym Chem 38:2787–2793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project 21664008) and Key Laboratory of Functional Small Organic Molecule, Ministry of Education (No. KLFS-K01704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhong Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Huang, B., Liu, L. et al. Recyclable palladium-catalyzed synthesis of new cardo poly(amide-imide)s from diiodo imides, aromatic diamines containing cardo groups, and carbon monoxide. Polym. Bull. 79, 9523–9541 (2022). https://doi.org/10.1007/s00289-021-03959-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03959-5

Keywords

Navigation