Skip to main content

Advertisement

Log in

Synthesis of novel aromatic polyamides containing both sulfone linkages and cardo groups by a recyclable palladium-catalyzed carbonylation and condensation polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of novel aromatic polyamides containing both sulfone linkages and cardo groups were synthesized via a heterogeneous palladium-catalyzed carbonylation and condensation reaction of aromatic diiodides bearing ether sulfone linkages, carbon monoxide, and aromatic diamines with cardo groups. Polycondensation reaction proceeded smoothly under 1 atm of CO at 120 °C in N,N-dimethylacetamide (DMAc) by using a bidentate phosphine ligand-modified magnetic nanoparticles-anchored palladium complex [2P-Fe3O4@SiO2-PdCl2] as a recyclable catalyst with 1,8-diazabicycle[5,4,0]-7-undecene (DBU) as a base, furnishing cardo poly(ether sulfone amide)s with inherent viscosities between 0.70 and 0.77 dL/g. The resulting polyamides could be readily dissolved in polar aprotic organic solvents and even dissolved in less polar pyridine and tetrahydrofuran at room temperature and could be easily converted into flexible, transparent, and tough films via casting from their solutions in DMAc. These polymers exhibited excellent thermal stability with the glass transition temperatures between 241 and 283 °C and the temperatures at 5% weight loss ranging from 438 to 475 °C in an atmosphere of nitrogen. The polyamide films displayed good mechanical behavior with tensile strengths of 78.8–84.4 MPa, tensile moduli of 2.08–2.57 GPa, and elongations at breakage of 10.2–12.5%, and optically high transparency with cut-off wavelengths in the range of 338–368 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reglero Ruiz JA, Trigo-Lopez M, Garcia FC, Garcia JM (2017) Functional aromatic polyamides. Polymers 9(12):414–414

    Article  CAS  PubMed Central  Google Scholar 

  2. Liou GS, Hsiao SH (2002) Synthesis and properties of new soluble aromatic polyamides and polyimides on the basis of N, N′-bis(3-aminobenzoyl)-N, N ′- diphenyl-1,4-phenylenediamine. J Polym Sci Part A Polym Chem 40:2564–2574

    Article  CAS  Google Scholar 

  3. Liaw DJ, Hsu PN, Chen WH, Lin SL (2002) High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenylamine group: synthesis and characterization. Macromolecules 35:4669–4675

    Article  CAS  Google Scholar 

  4. Wu SC, Shu CF (2003) Synthesis and properties of soluble aromatic polyamides derived from 2,2’-bis(4-carboxyphenoxy)-9,9’-spirobifluorene. J Polym Sci Part A Polym Chem 41:1160–1166

    Article  CAS  Google Scholar 

  5. Garcia JM, Garcia FC, Serna F, de laPena JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686

    Article  CAS  Google Scholar 

  6. Bera D, Padmanabhan V, Banerjee S (2015) Highly gas permeable polyamides based on substituted triphenylamine. Macromolecules 48:4541–4554

    Article  CAS  Google Scholar 

  7. Dewilde S, Hoogerstraete TV, Dehaen W, Binnemans K (2018) Synthesis of poly-p-phenylene terephthalamide (PPTA) in ionic liquids. ACS Sustainable Chem Eng 6:1362–1369

    Article  CAS  Google Scholar 

  8. Pascual BS, Trigo-Lopez M, Ramos C, Sanz MT, Pablos JL, Garcia FC, Reglero Ruiz JA, Garcia JM (2019) Microcellular foamed aromatic polyamides (aramids). Structure, thermal and mechanical properties. Eur Polym J 110:9–13

    Article  CAS  Google Scholar 

  9. Trigo-Lopez M, Garcia JM, Reglero Ruiz JA, Garcia FC, Ferrer R (2018) Aromatic polyamides. In: Mark HF (ed) Encyclopedia of polymer science and technology. Wiley, New Jersey, pp 1–51

    Google Scholar 

  10. Liou G-S, Hsiao S-H, Ishida M, Kakimoto M, Imai Y (2002) Synthesis and characterization of novel soluble triphenylamine-containing aromatic poly- amides based on N, N’-bis(4-aminophenyl)-N, N’-diphenyl-1,4-phenylenediamine. J Polym Sci Part A Polym Chem 40:2810–2818

    Article  CAS  Google Scholar 

  11. Liou G-S, Hsiao S-H (2002) Polyterephthalamides with naphthoxy-pendent groups. J Polym Sci Part A Polym Chem 40:1781–1789

    Article  CAS  Google Scholar 

  12. Hsiao S-H, Chen W-T (2003) Syntheses and properties of novel fluorinated polyamides based on a bis(ether-carboxylic acid) or a bis(ether amine) extended from bis(4-hydroxyphenyl)phenyl-2,2,2-trifluoroethane. J Polym Sci Part A Polym Chem 41:420–431

    Article  CAS  Google Scholar 

  13. Liaw D-J, Liaw B-Y (1998) Synthesis and properties of new polyamides derived from 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene and aromatic dicarboxylic acids. J Polym Sci Part A Polym Chem 36:1069–1074

    Article  CAS  Google Scholar 

  14. Espeso JF, Ferrero E, de la Campa JG, Lozano AE, de Abajo J (2001) Synthesis and characterization of new soluble aromatic polyamides derived from 1,4-bis(4-carboxyphenoxy)-2,5-di-tert-butylbenzene. J Polym Sci Part A Polym Chem 39:475–485

    Article  CAS  Google Scholar 

  15. Johnson RN, Farnham AG, Clendinning RA, Hale WF, Merriam CN (1967) Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties. J Polym Sci Part A Polym Chem 5:2375–2398

    Article  CAS  Google Scholar 

  16. Attwood TE, King T, Leslie VJ, Rose JB (1977) Poly(arylene ether sulphones) by polyetherification: 2. Polycondensations Polymer 18:359–364

    Article  CAS  Google Scholar 

  17. Harris JE, Johnson RN (1985) Polysulfone. In: Mark HF, Bikales NB, Overberger CG, Menges G (eds) Encyclopedia of polymer science and engineering, vol 11, 2nd edn. Wiley, New York, p 196

    Google Scholar 

  18. Knight J, Wright WW (1983) Heat-resistant polymers. Plenum, New York, p 170

    Google Scholar 

  19. Brode GL, Kwiatkowski GT, Bedwin AW (1974) High temperature polymers. II. High temperature polymers from 4,4′-[sulfonylbis(p-phenyleneoxy)]dianiline. J Polym Sci Part A Polym Chem 12:575–587

    Article  Google Scholar 

  20. Chiriac C, Stille JK (1977) Polyaramides containing sulfone ether units. Macromolecules 10:712–713

    Article  CAS  Google Scholar 

  21. Mehdipour-Ataei S, Sarrafi Y, Hatami M, Akbarian-Feizi L (2005) Poly(sulfone ether amide amide)s as a new generation of soluble, thermally stable polymers. Eur Polym J 41:491–499

    Article  CAS  Google Scholar 

  22. Yoneyama M, Kakimoto M, Imai Y (1988) Novel synthesis of aromatic poly- amides by palladium-catalyzed polycondensation of aromatic dibromides, aromatic diamines, and carbon monoxide. Macromolecules 21:1908–1911

    Article  CAS  Google Scholar 

  23. Yoneyama M, Kakimoto M, Imai Y (1989) Synthesis of aliphatic-aromatic polyamides by palladium-catalyzed polycondensation of aliphatic diamines, aromatic dibromides, and carbon monoxide. J Polym Sci Part A Polym Chem 27:1985–1991

    Article  CAS  Google Scholar 

  24. Turner SR, Perry RJ, Blevins RW (1992) High molecular weight aromatic polyamides from aromatic diiodides and diamines. Macromolecules 25:4819–4820

    Article  CAS  Google Scholar 

  25. Perry RJ, Turner SR, Blevins RW (1993) Synthesis of linear, high molecular weight aromatic polyamides by the palladium-catalyzed carbonylation and condensation of aromatic diiodides, diamines, and carbon monoxide. Macromolecules 26:1509–1513

    Article  CAS  Google Scholar 

  26. Perry RJ, Turner SR, Blevins RW (1994) Palladium-catalyzed formation of poly(imide-amides). 1. reactions with diiodo imides and diamines. Macromolecules 27:4058–4062

    Article  CAS  Google Scholar 

  27. Ueda M, Yokoo T (1994) Synthesis of poly(ether-ketone-amide)s by palladium- catalyzed polycondensation of aromatic dibromides containing ether ketone structure, aromatic diamines, and carbon monoxide. J Polym Sci Part A Polym Chem 32:2065–2071

    Article  CAS  Google Scholar 

  28. Ueda M, Yokoo T, Nakamura T (1994) Synthesis of poly(ether-sulfone-amide)s by palladium-Catalyzed Polycondensation of aromatic dibromides containing ether sulfone structure, aromatic diamines, and carbon monoxide. J Polym Sci Part A Polym Chem 32:2989–2995

    Article  CAS  Google Scholar 

  29. Perry RJ, Turner SR, Blevins RW (1995) Palladium-catalyzed formation of poly(imide-amides). 2 reactions with chloroiodophthalimides and diamines. Macromolecules 28:2607–2610

    Article  CAS  Google Scholar 

  30. Rabani G, Kraft A (2002) Synthesis of poly(ether-esteramide) elastomers by palladium-Catalyzed Polycondensation of aromatic diiodides with telechelic diamines and carbon monoxide. Macromol Rapid Commun 23:375–379

    Article  CAS  Google Scholar 

  31. Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem Commun 35:4435–4437

    Article  CAS  Google Scholar 

  32. Baruwati B, Guin D, Manorama SV (2007) Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions. Org Lett 9:5377–5380

    Article  CAS  PubMed  Google Scholar 

  33. Jin M-J, Lee D-H (2010) A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew Chem Int Ed 49:1119–1122

    Article  CAS  Google Scholar 

  34. Shylesh S, Wang L, Thiel WR (2010) Palladium(II)-phosphine complexes supported on magnetic nanoparticles: filtration-free, recyclable catalysts for Suzuki-Miyaura cross-coupling reactions. Adv Synth Catal 352:425–432

    Article  CAS  Google Scholar 

  35. Li P, Wang L, Zhang L, Wang G-W (2012) Magnetic nanoparticles-supported palladium: a highly efficient and reusable catalyst for the Suzuki, Sonogashira, and Heck reactions. Adv Synth Catal 354:1307–1318

    Article  CAS  Google Scholar 

  36. Tang H, Huang B, Zhu X, Cai M (2018) Synthesis of poly(ether ketone amide)s containing 4-aryl-2,6-diphenylpyridine moieties by a heterogeneous palladium- catalyzed polycondensation of aromatic diiodides, aromatic diamines, and carbon monoxide. Polym Adv Technol 29:2204–2215

    Article  CAS  Google Scholar 

  37. Liu L, Zou F, Zhang R, Cai M (2019) Synthesis of new fluorinated aromatic poly (ether ketone amide)s containing cardo structures by a heterogeneous palladium-catalyzed carbonylative polycondensation. Polym Adv Technol 30:58–69

    Article  CAS  Google Scholar 

  38. Liu L, Li J, Yan T, Cai M (2020) Novel preparation of poly(arylene ether sulfone amide)s via supported palladium-catalyzed carbonylative polymerization. Polym Bull 77:1951–1968

    Article  CAS  Google Scholar 

  39. Hu Z, Li S, Zhang C (2007) Synthesis and properties of polyamide-imides containing fluorenyl cardo structure. J Appl Polym Sci 106:2494–2450

    Article  CAS  Google Scholar 

  40. Yang CP, Su YY, Hsu MY (2006) Synthesis and properties of fluorinated polyamides and poly(amide imide)s based on 9,9-bis[4-(4-amino-2-trifluoro- methylphenoxy)phenyl]fluorene, aromatic dicarboxylic acids, and various monotrimellitimides and bistrimellitimides. Colloid Polym Sci 284:990–1000

    Article  CAS  Google Scholar 

  41. Sheng S, Li T, Jiang J, He W, Song C (2010) Synthesis and properties of novel polyamides containing sulfone-ether linkages and xanthene cardo groups. Polym Int 59:1014–1020

    Article  CAS  Google Scholar 

  42. Sheng S-R, Ma C-X, Jiang J-W, Li Q, Song C-S (2011) Optically high transparency and light color of organosoluble fluorinated polyamides with bulky xanthene pendent groups. Polym Adv Technol 22:2523–2532

    Article  CAS  Google Scholar 

  43. Yang CP, Lin JH (1995) Syntheses and properties of aromatic polyamides and polyimides based on 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine. Polymer 36:2607–2614

    Article  CAS  Google Scholar 

  44. Liaw DJ, Liaw BY, Chung CY (1999) Synthesis and characterization of new cardo polyamides derived from 8,8-bis[4-(4-aminophenoxy)phenyl]tricycle- [5.2.1.02,6]decane. Macromol Chem Phys 200:1023–1027

    Article  CAS  Google Scholar 

  45. Liaw DJ, Liaw BY, Chung CY (2000) Synthesis and characterization of new cardo polyamides and polyimides containing tert-butylcyclohexylidene units. Macromol Chem Phys 201:1887–1893

    Article  CAS  Google Scholar 

  46. Wen P, He R, Li X-D, Lee M-H (2017) Synthesis and characterization of high refractive index and low birefringence polyimides containing spirobifluorene in the side chain. Polymer 117:76–83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Project 21664008), Natural Science Foundation of Jiangxi Province in China (Project 20181BAB203011) and Key Laboratory of Functional Small Organic Molecule, Ministry of Education (No. KLFS-KF-201704) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhong Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, B., Tang, H. et al. Synthesis of novel aromatic polyamides containing both sulfone linkages and cardo groups by a recyclable palladium-catalyzed carbonylation and condensation polymerization. Polym. Bull. 79, 3333–3352 (2022). https://doi.org/10.1007/s00289-021-03675-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03675-0

Keywords

Navigation