Skip to main content

Advertisement

Log in

Reinforced epoxy-based laminates containing agro-industrial waste fiber from peach palm tree: effect of the matrix modification

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of natural fibers originated from agricultural waste in polymer composites is considered promising ecological, economical and societal solutions for the waste disposal problem. The present work investigates the effect of the modification of epoxy resin (ER) on the mechanical, dynamic-mechanical and water absorption properties of raw peach palm fiber (PPF) reinforced laminates. Liquid polybutadiene functionalized with isocyanate (PBNCO) and a commercial polyol-based isocyanate pre-polymer (E29) were used to modify the epoxy matrix, resulting in ER@PBNCO and ER@E29 thermosetting materials, respectively, after the curing process with isophorone-diamine. Composites prepared with modified ER matrices displayed outstanding flexural properties, better impact resistance and higher glass transition temperature. Moreover, superior reinforcing effect, obtained from dynamic-mechanical properties, was observed for ER@PBNCO/PPF and ER@E29/PPF composites. The best response in terms of impact resistance and water uptake was achieved with ER@PBNCO matrix, due to the toughening effect of polybutadiene itself and its hydrophobic nature. The creep resistance and strain recovery of both neat matrices and the corresponding composites were also evaluated using dynamic-mechanical equipment. The modified ER networks presented the highest creep resistance and better strain recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chandgude S, Salunkhe S (2021) In state of art: mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components. Polym Compos in press. https://doi.org/10.1002/pc.26045

    Article  Google Scholar 

  2. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polym Eng Sci 49:1253–1272. https://doi.org/10.1002/pen.21328

    Article  CAS  Google Scholar 

  3. Tanasa F, Zanoaga M, Teaca CA, Nechifor M, Shahzad A (2020) Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications – A review. I Methods of modification Polym Compos 41:5–31. https://doi.org/10.1002/pc.25354

    Article  CAS  Google Scholar 

  4. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271. https://doi.org/10.1080/1023666X.2014.880016

    Article  CAS  Google Scholar 

  5. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  CAS  Google Scholar 

  6. Jain S, Kumar R, Jindal UC (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27:4598–4604

    Article  CAS  Google Scholar 

  7. Paramasivam T, Abdul Kalam APJ (1974) On the study of indigenous natural-fibre composites. Fibre Sci Technol 7:85–88

    Article  Google Scholar 

  8. Dungani R, Karina M, Subyakto Sulaeman A, Hermawan D, Hadiyane A (2016) Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian J Plant Sci 15:42–55. https://doi.org/10.3923/ajps.2016.42.55

    Article  CAS  Google Scholar 

  9. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustainable Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

    Article  CAS  Google Scholar 

  10. Batista KC, Silva DAK, Coelho LAF, Pezzin SH, Pezzin APT (2010) Soil biodegradation of PHBV/peach palm particles biocomposites. J Polym Environ 18:346–354. https://doi.org/10.1007/s10924-010-0238-4

    Article  CAS  Google Scholar 

  11. Silva JSP, Silva JMF, Soares BG, Livi S. (2017) Fully biodegradable composites based on poly(butylenes adipate-co-terephthalate)/peach palm trees fiber. Compos: Part B. 129: 117–123. doi: 10.1016/ j.compositesb.2017.07.088

  12. Magalhães WLE, Pianaro AS, Granado CJF, Satyanarayana KG (2013) Preparation and characterization of polypropylene/heart of-peach palm sheath composite. J Appl Polym Sci 127:1285–1294. https://doi.org/10.1002/app.37633

    Article  CAS  Google Scholar 

  13. Farias MA, Farina MZ, Pezzin APT, Silva DAK (2009) Unsaturated polyester composites reinforced with fiber and powder of peach palm: mechanical characterization and water absorption profile. Mater Sci Eng: Part C 29:510–513. https://doi.org/10.1016/j.msec.2008.09.020

    Article  CAS  Google Scholar 

  14. Cordeiro EP, Pita VJRR, Soares BG (2017) Epoxy-fiber of peach palm trees composites: the effect of composition and fiber modification on mechanical and dynamic mechanical properties. J Polym Environ 25:913–924. https://doi.org/10.1007/s10924-016-0841-0

    Article  CAS  Google Scholar 

  15. Merlini C, Barra GMO, Cunha MDPP, Ramoa SDAS, Soares BG, Pegoretti A (2017) Electrically conductive composites of polyurethane derived from castor oil with polypyrrole-coated peach palm fibers. Polym Compos 38:2146–2155. https://doi.org/10.1002/pc.23790

    Article  CAS  Google Scholar 

  16. Pontes K, Soares BG, Barra GMO, Livi S (2018) The effect of ionic liquido n the development of polyaniline/natural fibers and biodegradable conductive composites based on poly(butylenes adipate-co-terephthalate). Macromol Symp 380:1800101. https://doi.org/10.1002/masy.201800101

    Article  CAS  Google Scholar 

  17. Datta J, Wloch M (2014) Selected biotrends in development of epoxy resins and their composites. Polym Bull 71:3035–3049. https://doi.org/10.1007/s00289-014-1229-8

    Article  CAS  Google Scholar 

  18. Saba N, Jawaid M, Alothman OY, Paridah MT, Hassan A (2016) Recent advances in epoxy resin, natural fiber-renforced epoxy composites and their applications. J Reinf Plast Compos 35:447–470. https://doi.org/10.1177/0731684415618459

    Article  CAS  Google Scholar 

  19. Soares BG, Livi S (2017) Novel techniques for the preparation of different epoxy-rubber blends. In: Handbook of Epoxy Blends. Ed: Parameswaranpillai J.; Hammed N.; Pionteck J.; Woo EM. Springer Int. Publishing, Switzerland, Chapter 23, 29–67.

  20. Thomas S, Sinturel C, Thomas R (2014) Micro – and nanostructures epoxy/rubber blends.Wiley- VCH, Weinheim.

  21. Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: A critical review. J Macromol Sci C: Polym Rev 49:201–225. https://doi.org/10.1080/15583720903048227

    Article  CAS  Google Scholar 

  22. Bakar MAA, Ahmad S, Kasolang S, Ahmad MA, Roseley NRN, Norazlini S, Kuntjoro W (2015) Mechanical performance of modified epoxy reinforced hybrid natural fiber compoite. J Teknologi 76:13–17

    Google Scholar 

  23. Muhammad YH, Ahmad S, Bakar MAA, Mamun AA, Heim HP (2015) Mechanical properties of hybrid glass/kenaf fibre-reinforced epoxy composite ith matrix modification using liquid epoxidised natural rubber. J Reinforced Plastics and Compos 34:896–906. https://doi.org/10.1177/0731684415584431

    Article  CAS  Google Scholar 

  24. Kinloch AJ, Taylor AC, Techapaitoon M, Teo WS, Sprenger S (2015) Tough, natural-fibre composites based upon epoxy matrices. J Mater Sci 50:6947–6960. https://doi.org/10.1007/s10853-015-9246-z

    Article  CAS  Google Scholar 

  25. Vinothkumar M, Jaiganesh V, Malarvannan RR (2019) Effect of surface-modified pineapple fibre-reinforced microB4C and CTBN rubber particle toughened epoxy hybrid composites in mechanical, impact damage, thermal and water absorption behaviour. Mater Res Express 6:115343. https://doi.org/10.1088/2053-1591/ab4e03

    Article  Google Scholar 

  26. Barcia FL, Amaral TP, Soares BG (2003) Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene. Polymer 44:5811–5819. https://doi.org/10.1016/S0032-3861(03)00537-8

    Article  CAS  Google Scholar 

  27. Soares BG, Dahmouche K, Lima VD, Silva AA, Caplan SPC, Barcia FL (2011) Characterization of nanostructured epoxy networks modified with isocyanate-terminated liquid polybutadiene. J Coll Interface Sci 358:338–346. https://doi.org/10.1016/j.jcis.2011.03.030

    Article  CAS  Google Scholar 

  28. Soares BG, Silva AA, Lima VD, Barros DN, Livi S (2021) Toughened epoxy-liquid polybutadiene networks cured with anhydride with outstanding thermal and mechanical properties. J Appl Polym Sci 138:50175. https://doi.org/10.1002/app.50175

    Article  CAS  Google Scholar 

  29. Soares BG, Gonçalez V, Galimberti R, Barcia FL, Sirqueira AS (2008) Polyester containing isocyanate groups – modified epoxy resin: rheologica, dynamic-mechanical, and impact properties. Polym Eng Sci 48:1917–1922. https://doi.org/10.1002/pen.21035

    Article  CAS  Google Scholar 

  30. Soares BG, Gonçalez V, Galimberti R, Sirqueira AS, Barcia FL, Simão RA (2008) Toughened of an epoxy resin with an isocyanate-terminated polyether. J Appl Polym Sci 108:159–166. https://doi.org/10.1002/app.26991

    Article  CAS  Google Scholar 

  31. Barcia FL, Soares BG, Sampaio E (2004) Adhesive properties of epoxy resin modified by end-functionalized liquid polybutadiene. J Appl Polym Sci 93:2370–2378. https://doi.org/10.1002/app.20739

    Article  CAS  Google Scholar 

  32. Soares BG, Alves FF (2018) Nanostructured epoxy-rubber network modified with MWCNT and ionic liquid: electrical, dynamic-mechanical, and adhesion properties. Polym Compos 39:E2584–E2594. https://doi.org/10.1002/pc.24852

    Article  CAS  Google Scholar 

  33. Soares BG, Bezerra BM, Barros DN, Silva AA (2019) Epoxy modified with urea-based ormosil and isocyanate-functionalized polybutadiene: viscoelastic and adhesion properties. Compos, Part B 168:334–341. https://doi.org/10.1016/j.compositesb.2019.03.058

    Article  CAS  Google Scholar 

  34. Escócio VA, Pacheco EBAV, Sousa AMF, Brígida MACS, Soares AG, Visconte LLY (2017) Study of natural fibers from waste from sponge gourd, peach palm tree and papaya pseudstem. Int J Environ Agriculture Res 3:11–24

    Google Scholar 

  35. Barcia FL, Abrahão MA, Soares BG (2002) Modification of epoxy resin by isocyanate-terminated polybutadiene. J Appl Polym Sci 83:838–849. https://doi.org/10.1002/app.10079

    Article  CAS  Google Scholar 

  36. Soto AAR, Borges LMSA, Rivera JLV, Batista DP (2015) Fabrication of a composite with epoxy matrix and henequen fibers as reinforcement long and with random orientation. Ingenieria Mecanica 18:122–128

    Google Scholar 

  37. Soto AAR, Rivera JLV, Borges LMSA, Ruiz IEP (2018) Tensile, impact and thermal properties of an epoxy novolac matrix composites with Cuban henequen fibers. Mechanics of Compos Mater 54:341–348. https://doi.org/10.1007/s11029-018-9744-6

    Article  CAS  Google Scholar 

  38. Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A 43:1431–1440. https://doi.org/10.1016/j.compositesa.2012.04.007

    Article  CAS  Google Scholar 

  39. Padmavathi T, Naidu SV, Rao RMVGK (2012) Studies on mechanical behavior of surface modified sisal fibre-epoxy composites. J Reinforced Plastics & Compos 31:519–532. https://doi.org/10.1177/07316844

    Article  CAS  Google Scholar 

  40. Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinforced Plastics & Compos 31:425–437. https://doi.org/10.1177/0731684412439494

    Article  CAS  Google Scholar 

  41. Mylsamy K, Rajendran I (2011) Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater & Design 32:4629–4640. https://doi.org/10.1016/j.matdes.2011.04.029

    Article  CAS  Google Scholar 

  42. Yousif BF, Shalwan A, Chin CW, Ming KC (2012) Flexural properties of treated and untreated kenaf/epoxy composites. Mater & Design 40:378–385. https://doi.org/10.1016/j.matdes.2012.04.017

    Article  CAS  Google Scholar 

  43. Anbukarasi K, Kalaiselvam S (2015) study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites. Mater & Design 66:321–330. https://doi.org/10.1016/j.matdes.2014.10.078

    Article  CAS  Google Scholar 

  44. Devireddy SBR, Biswas S (2017) Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoxy based hybrid composites. Polym Comp 38:1396–1403. https://doi.org/10.1002/pc.23706

    Article  CAS  Google Scholar 

  45. Athith D, Sanjay MR, Gowda TGY, Madhu P, Arpitha GR, Yogesha B, Omri MA (2018) Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. J Industrial Textiles 48:713–737. https://doi.org/10.1177/1528083717740765

    Article  CAS  Google Scholar 

  46. Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos : Part B 85:150–160. https://doi.org/10.1016/j.compositesb.2015.09.02

    Article  CAS  Google Scholar 

  47. Sikora M, Schilling CH, Tomasik P, Li C (2002) Dextrin pasticizers for aqueous colloidal processing of alumina. J Eur Ceramic Soc 22:625–628. https://doi.org/10.1016/S0955-2219(01)00337-5

    Article  CAS  Google Scholar 

  48. Milotskyi R, Bliard C (2018) Carboxymethylation of plasticized starch by reactive extrusion (REX) with high reaction efficiency. Starch 70:1700275. https://doi.org/10.1002/star.201700275

    Article  CAS  Google Scholar 

  49. Romanzini D, Ornaghi HL Jr, Amico SC, Zattera AJ (2012) Influence of fiber hybridization on the dynamic mechanical properties of glass/ramie fiber-reinforced polyester composites. J Reinf Plast Compos 31:1652–1661. https://doi.org/10.1177/0731684412459982

    Article  CAS  Google Scholar 

  50. Pothan LA, Thomas S, Groeninckx G (2006) The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos Part A 37:1260–1269. https://doi.org/10.1016/j.compositesa.2005.09.001

    Article  CAS  Google Scholar 

  51. Chua PS (1987) Dynamic mechanical analysis studies of the interphase. Polym Compos 8:308–313

    Article  CAS  Google Scholar 

  52. Ornaghi HL, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118:887–896. https://doi.org/10.1002/app.32388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grant number 303457/2013-9) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (grant number E-26/202.830/2017).

Funding

This work was sponsored in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance code 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grant number 303457/2013–9), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (Grant number E-26/202.830/2017).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Bluma Guenther Soares, Juliana Farias da Silva]; Methodology: [Juliana M. Farias da Silva, Jéssica P. Soares da Silva] Formal analysis and investigation: [Juliana M. Farias da Silva, Jéssica P. Soares da Silva]; Writing—original draft preparation: [Juliana M. Farias da Silva]; Writing—review and editing: [Bluma Guenther Soares]; Funding acquisition: [Bluma Guenther Soares]; Resources: [Bluma Guenther Soares]; Supervision: [Bluma Guenther Soares].

Corresponding author

Correspondence to Bluma G. Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.M.F., da Silva, J.P.S. & Soares, B.G. Reinforced epoxy-based laminates containing agro-industrial waste fiber from peach palm tree: effect of the matrix modification. Polym. Bull. 79, 7679–7696 (2022). https://doi.org/10.1007/s00289-021-03869-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03869-6

Keywords

Navigation