Skip to main content

Advertisement

Log in

Chitosan–ZnO nanocomposite from a circular economy perspective: in situ cotton-used fabric recycling and the nanocomposite recovering

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

End-of-life textile recycling presents a real economic and environmental challenge. From a circular economy perspective, we attempt to evaluate the chitosan–ZnO nanocomposite efficiency in the recycling of cotton-used fabric, accompanied by the electroanalytic and the optoelectronic investigation of the resulting nanocomposites. For comparison, the precipitation and the sonochemical pathways were used as in situ treatment methods. The effect of chitosan characteristics on the antibacterial sustainability of the treated fabrics and the properties of the resulting nanocomposites were studied. The chemical bonding, crystal structure, morphology, optical and optoelectronic properties, intermolecular interactions and antibacterial properties of the resulting free nanocomposites were investigated. The treated used fabrics were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy before and after 20 washes. Density functional theory study and atoms in molecules analysis of cellulose–nanocomposite interaction were carried out. The results indicate an effective dose of 2 mg against tested bacteria for all the nanocomposites. The nanocomposites have an orange-red emission with no Zn defects and large oscillator strength (ƒ) values. Medium molecular weight chitosan-based nanocomposites showed more intense orange-red emission and higher ƒ values. Sustainable antibacterial properties of treated fabrics are generated with high molecular weight chitosan-based nanocomposites. More than 83% of the antibacterial activity is retained after 20 washes. The theoretical study confirms the stability of the free nanocomposite (chitosan–ZnO) and its destabilization by contacting the fabric when ZnO is a rod shaped, which generates its growth-promoting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Suarez-Eiroa B, Fernandez E, Mendez-Martínez G, Soto-Onate D (2019) Operational principles of circular economy for sustainable development: linking theory and practice. J Clean Prod 214:952–961. https://doi.org/10.1016/j.jclepro.2018.12.271

    Article  Google Scholar 

  2. Mallakpour S, Sirous F, Hussain CM (2021) A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies. Int J Biol Macromol 170:701–716. https://doi.org/10.1016/j.ijbiomac.2020.12.163

    Article  CAS  PubMed  Google Scholar 

  3. Pinto RJB, Carlos LD, Marques PAAP, Silvestre AJD, Freire CSR (2014) An overview of luminescent bio-based composites. J Appl Polym Sci. https://doi.org/10.1002/APP.41169

    Article  Google Scholar 

  4. Ponnamma D, Sadasivuni KK, AlMaadeed MA (2015) Introduction of biopolymer composites: what to do in electronics? In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan J-J, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, Amsterdam, pp 1–12. https://doi.org/10.1016/B978-0-12-809261-3.00001-2

    Chapter  Google Scholar 

  5. Koszewska M (2018) circular economy: challenges for the textile and clothing industry. Autex Res J 18:337–347. https://doi.org/10.1515/aut-2018-0023

    Article  Google Scholar 

  6. Mosquera MAF (2017) Circular economy at the micro level: a dynamic view of incumbents’ struggles and challenges in the textile industry. J Clean Prod 168:833–845. https://doi.org/10.1016/j.jclepro.2017.09.056

    Article  Google Scholar 

  7. Jia F, Yin S, Chen L, Chen X (2020) Circular economy in textile and apparel industry: a systematic literature review. J Clean Prod 259:120728–120748. https://doi.org/10.1016/j.jclepro.2020.120728

    Article  Google Scholar 

  8. Zins HM (2011) Reusable medical textiles. In: Bartels VT (ed) Handbook of medical textiles. Woodhead Publishing Limited, Cambridge, pp 80–105. https://doi.org/10.1533/9780857093691.1.80

    Chapter  Google Scholar 

  9. To MH, Uisan K, Ok YS, Pleissner D, Lin CSK (2019) Recent trends in green and sustainable chemistry: rethinking textile waste in a circular economy. Curr Opin Green Sustain Chem 20:1–10. https://doi.org/10.1016/j.cogsc.2019.06.002

    Article  Google Scholar 

  10. Morganti P (2016) Circular economy: a new horizon for bio- nanocomposites from waste materials. Int J Biotech Well 5:1–7. https://doi.org/10.6000/1927-3037.2016.05.04.1

    Article  Google Scholar 

  11. Preethi S, Abarna K, Nithyasri M, Kishore P, Deepika K, Ranjithkumar R, Bhuvaneshwari V, Bharathi D (2020) Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int J Biol Macromol 164:2779–2787. https://doi.org/10.1016/j.ijbiomac.2020.08.047

    Article  CAS  PubMed  Google Scholar 

  12. Jatoi AS, Khan FSA, Mazari SA, Mubarak NM, Abro R, Ahmed J, Ahmed M, Baloch H, Sabzoi N (2020) Current applications of smart nanotextiles and future trends. In: Ehrmann A, Nguyen TA, Tri PN (eds) Nanosensors and nanodevices for smart multifunctional textiles. Elsevier, Amsterdam, pp 343–365. https://doi.org/10.1016/B978-0-12-820777-2.00019-4

    Chapter  Google Scholar 

  13. Massella D, Giraud S, Guan J, Ferri A, Salaün F (2019) Manufacture techniques of chitosan-based microcapsules to enhance functional properties of textiles. In: Crini G, Lichtfouse E (eds) Sustainable agriculture reviews 35. Springer Nature, Switzerland, pp 303–336. https://doi.org/10.1007/978-3-030-16538-3_8

    Chapter  Google Scholar 

  14. Rajendran K, Sivalingam T (2013) Industrial method of cotton fabric finishing with chitosan–ZnO composite for anti-bacterial and thermal stability. Ind Crops Prod 47:160–167. https://doi.org/10.1016/j.indcrop.2013.03.007

    Article  CAS  Google Scholar 

  15. Wu Y, Yang Y, Zhang Z, Wang Z, Zhao Y, Sun L (2018) Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles. Text Res J 89:1–14. https://doi.org/10.1177/0040517518758002

    Article  CAS  Google Scholar 

  16. Attia NF, Elashery SEA, Oh H (2020) Nanomaterials-based antibacterial textiles. In: Ehrman A, Nguyen T, Tri PN (eds) Nanosensors and nanodevices for smart multifunctional textiles. Elsevier, Amsterdam, pp 135–147. https://doi.org/10.1016/B978-0-12-820777-2.00009-1

    Chapter  Google Scholar 

  17. Román LE, Gomez ED, Solís JL, Gómez MM (2020) Antibacterial cotton fabric functionalized with copper oxide nanoparticles. Molecules 25:1–21. https://doi.org/10.3390/molecules25245802

    Article  CAS  Google Scholar 

  18. Barros FCF, Sousa Neto VO, Carvalho TV, Vieira RS, Silva GMM, Nascimento RF (2015) Recent development of chitosan nanocomposites with multiple potential uses. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites. Springer, New Delhi, pp 497–531. https://doi.org/10.1007/978-81-322-2473-0_16

    Chapter  Google Scholar 

  19. Cheaburu-Yilmaz CN, Yilmaz O, Vasile C (2015) Eco-friendly chitosan-based nanocomposites: chemistry and applications. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites. Springer, New Delhi, pp 341–386. https://doi.org/10.1007/978-81-322-2473-0_11

    Chapter  Google Scholar 

  20. Safeera TA, Anila EI (2017) Wet chemical synthesis of chitosan capped ZnO: Na nanoparticles for luminescence applications. Int J Biol Macromol 104:1833–1836. https://doi.org/10.1016/j.ijbiomac.2017.02.027

    Article  CAS  PubMed  Google Scholar 

  21. Alamdari S, Ghamsari MS, Lee C, Han W, Park H-H, Tafreshi MJ, Afarideh H, Majles Ara MH (2020) Preparation and characterization of zinc oxide nanoparticles using leaf extract of sambucus ebulus. Appl Sci 10:3620–3639. https://doi.org/10.3390/app10103620

    Article  CAS  Google Scholar 

  22. Jangir LK, Kumari Y, Kumar A, Kumar M, Awasthi K (2017) Investigation of luminescence and structural properties of ZnO nanoparticles, synthesized with different precursors. Mater Chem Front 1:1413–1421. https://doi.org/10.1039/c7qm00058h

    Article  CAS  Google Scholar 

  23. Gupta AK, Hsu C-H, Purwidyantri A, Prabowo BA, Chiu K-P, Chen C-H, Tian Y-C, Lai C-S (2020) ZnO- Nanorod processed PC-SET as the light-harvesting model for plasmontronic fluorescence sensor. Sens Actuators B 307:127597–127608. https://doi.org/10.1016/j.snb.2019.127597

    Article  CAS  Google Scholar 

  24. Dheivamalar S, Bansurabanu K (2018) Enhancing the light harvesting efficiency, open circuit voltage and stability of molybdenum doped ZnO6 nanocluster in dye-sensitized solar cells: (a DFT study). Orient J Chem 34:2292–2304. https://doi.org/10.13005/ojc/340509

    Article  CAS  Google Scholar 

  25. Belay A (2010) Measurement of integrated absorption cross-section, oscillator strength and number density of caffeine in coffee beans by integrated absorption coefficient technique. Food Chem 121:585–590. https://doi.org/10.1016/j.foodchem.2009.12.052

    Article  CAS  Google Scholar 

  26. Prokhorov E, Luna-Bárcenas G, Yáñez Limón JM, Sánchez AG, Kovalenko Y (2020) Chitosan-ZnO nanocomposites assessed by dielectric, mechanical, and piezoelectric properties. Polymers 12:1991–2005. https://doi.org/10.3390/polym12091991

    Article  CAS  PubMed Central  Google Scholar 

  27. AATCC Test method 138–2005, AATCC Technical manual (2010)

  28. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Wallingford CT, Gaussian Inc

    Google Scholar 

  29. Environment MSM (2014) Release 8. Accelrys Software Inc., San Diego, Calif, USA

    Google Scholar 

  30. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  31. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  32. Wang X, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26. https://doi.org/10.1016/j.carbpol.2003.11.007

    Article  CAS  Google Scholar 

  33. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098. https://doi.org/10.1007/s12274-011-0160-7

    Article  CAS  Google Scholar 

  34. AbdElhady MM (2012) Preparation and characterization of chitosan/Zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem. https://doi.org/10.1155/2012/840591

    Article  Google Scholar 

  35. El-Nahhal IM, Zourab SM, Kodeh FS, Elmanama AA, Selmane M, Genois I, Babonneau F (2013) Nano-structured zinc oxide–cotton fibers: synthesis, characterization and applications. J Mater Sci: Mater Electron 24:3970–3975. https://doi.org/10.1007/s10854-013-1349-1

    Article  CAS  Google Scholar 

  36. Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645. https://doi.org/10.1007/s12034-006-0017-y

    Article  CAS  Google Scholar 

  37. Mason T, Peters D (2002) Practical sonochemistry uses and applications of ultrasound. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  38. Patil AB, Bhanage BM (2016) Sonochemistry: a greener protocol for nanoparticles synthesis. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer, Switzerland, pp 143–166

    Chapter  Google Scholar 

  39. Shahraki RR, Ebrahim SAS, Masoudpanah SM (2015) Synthesis and characterization of superparamagnetic zinc ferrite–chitosan composite nanoparticles. J Supercond Nov Magn 28:2143–2147. https://doi.org/10.1007/s10948-015-3015-8

    Article  CAS  Google Scholar 

  40. Pholnak C, Sirisathitkul C, Harding DJ (2011) Characterizations of octahedral zinc oxide synthesized by sonochemical method. J Phys Chem Solids 72:817–823. https://doi.org/10.1016/j.jpcs.2011.04.005

    Article  CAS  Google Scholar 

  41. Cayley GR, Hague DN (1971) Correlation between the metal-nitrogen stretching frequency and the coordination number in zinc ammines. Trans Faraday Soc 67:2896–2901. https://doi.org/10.1039/TF9716702896

    Article  CAS  Google Scholar 

  42. Zabihi E, Babaei A, Shahrampour D, Arab-Bafrani Z, Mirshahidi KS, Majidi HJ (2019) Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. Int J Biol Macromol 131:107–116. https://doi.org/10.1016/j.ijbiomac.2019.01.224

    Article  CAS  PubMed  Google Scholar 

  43. Yusof NAA, Zain NM, Pauzi N (2019) Synthesis of chitosan/Zinc oxide nanoparticles stabilized by chitosan via microwave heating. Bull Chem React Eng Catal 14:450–458. https://doi.org/10.9767/bcrec.14.2.3319.450-458

    Article  CAS  Google Scholar 

  44. Anandhavelu S, Thambidurai S (2011) Preparation of chitosan–zinc oxide complex during chitin deacetylation. Carbohydr Polym 83:1565–1569. https://doi.org/10.1016/j.carbpol.2010.10.006

    Article  CAS  Google Scholar 

  45. Montero-Muñoz M, Ramos-Ibarra JE, Rodríguez-Páez JE, Marques GE, Teodoro MD, Coaquira JAH (2020) Growth and formation mechanism of shape-selective preparation of ZnO structures: correlation of structural, vibrational and optical properties. Phys Chem Chem Phys 22:7329–7339. https://doi.org/10.1039/C9CP06744B

    Article  PubMed  Google Scholar 

  46. Kahn M, Monge M, Collière V, Senocq F, Maisonnat A, Chaudret B (2005) Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method. Adv Funct Mater 15:458–468. https://doi.org/10.1002/adfm.200400113

    Article  CAS  Google Scholar 

  47. Abiraman T, Kavitha G, Rengasamy R, Balasubramanian S (2016) Antifouling behavior of chitosan adorned zinc oxide nanorods. RSC Adv. https://doi.org/10.1002/adfm.200400113

    Article  Google Scholar 

  48. Magesh G, Bhoopathi G, Nithya N, Arun AP, Ranjith Kumar E (2018) Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles. Superlattices Microstruct 117:36–45. https://doi.org/10.1016/j.spmi.2018.03.003

    Article  CAS  Google Scholar 

  49. Barreto MSR, Andrade CT, Azero EG, Paschoalin VMF, Del Aguila EM (2017) Production of chitosan/zinc oxide complex by ultrasonic treatment with antibacterial activity. J Bacteriol Parasitol 8:330–337. https://doi.org/10.4172/2155-9597.1000330

    Article  Google Scholar 

  50. Nithya A, Jothivenkatachalam K (2015) Chitosan assisted synthesis of ZnO nanoparticles: an efficient solar light driven photocatalyst and evaluation of antibacterial activity. J Mater Sci: Mater Electron 26:10207–10216. https://doi.org/10.1007/s10854-015-3710-z

    Article  CAS  Google Scholar 

  51. Chauhan R, Kumar A, Chaudhary RP (2012) Photocatalytic studies of silver doped ZnO nanoparticles synthesized by chemical precipitation method. J Sol-Gel Sci Technol 63:546–553. https://doi.org/10.1007/s10971-012-2818-3

    Article  CAS  Google Scholar 

  52. Morkoç H, Özgur Ü (2009) Zinc oxide: fundamentals materials and device technology. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim

    Book  Google Scholar 

  53. Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett 4:107–118. https://doi.org/10.1007/s40089-014-0107-6

    Article  CAS  Google Scholar 

  54. Cintas P, Cravotto G, Barge A, Martina K (2015) Interplay between mechanochemistry and sonochemistry. Top Curr Chem 369:239–284. https://doi.org/10.1007/128_2014_623

    Article  CAS  PubMed  Google Scholar 

  55. Kumar S, Krishnakumar B, Sobral AJFN, Koh J (2018) Bio-based (Chitosan/PVA/ZnO) nanocomposites film: thermally stable and photoluminescence material for removal of organic dye. Carbohydr Polym 205:559–564. https://doi.org/10.1016/j.carbpol.2018.10.108

    Article  CAS  PubMed  Google Scholar 

  56. Mi F-L (2005) Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission. Biomacromol 6:975–987. https://doi.org/10.1021/bm049335p

    Article  CAS  Google Scholar 

  57. Huang H, Liu F, Chen S, Zhao Q, Liao B, Long Y, Zeng Y, Xia X (2013) Enhanced fluorescence of chitosan based on size change of micelles and application to directly selective detecting Fe3+ in human serum. Biosens Bioelectron 42:539–544. https://doi.org/10.1016/j.bios.2012.10.098

    Article  CAS  PubMed  Google Scholar 

  58. Packirisamy RG, Govindasamy C, Sanmugam A, Venkatesan S, Kim H-S, Vikraman D (2019) Synthesis of novel Sn1−x ZnxO-chitosan nanocomposites: structural, morphological and luminescence properties and investigation of antibacterial properties. Int J Biol Macromol 138:546–555. https://doi.org/10.1016/j.ijbiomac.2019.07.120

    Article  CAS  PubMed  Google Scholar 

  59. Sanmugam A, Vikraman D, Venkatesan S, Park HJ (2017) Optical and structural properties of solvent free synthesized starch/chitosan-ZnO nanocomposites. J Nanomater. https://doi.org/10.1155/2017/7536364

    Article  Google Scholar 

  60. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuler A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98:7665–7673. https://doi.org/10.1021/j100082a044

    Article  CAS  Google Scholar 

  61. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4:1457–1465. https://doi.org/10.1021/bm034130m

    Article  CAS  Google Scholar 

  62. Bui VKH, Park D, Lee YC (2017) Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobialwound healing applications: a mini review of the research trends. Polymers 9:21–45. https://doi.org/10.3390/polym9010021

    Article  CAS  PubMed Central  Google Scholar 

  63. Negi H, Agarwal T, Zaidi MGH, Goel R (2012) Comparative antibacterial efficacy of metal oxide nanoparticles against gram negative bacteria. Ann Microbiol 62:765–772. https://doi.org/10.1007/s13213-011-0317-3

    Article  CAS  Google Scholar 

  64. Sathiya SM, Okram GS, Dhivya SM, Manivannan G, Rajan MAJ (2016) Interaction of chitosan/zinc oxide nanocomposites and their antibacterial activities with Escherichia coli. Mater Today Proc 3:3855–3860. https://doi.org/10.1016/j.matpr.2016.11.040

    Article  Google Scholar 

  65. Zhong R, Zhong Q, Huo M, Yang B, Li H (2020) Preparation of biocompatible nano-ZnO/Chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation. Int J Biol Macromol 146:939–945. https://doi.org/10.1016/j.ijbiomac.2019.09.217

    Article  CAS  PubMed  Google Scholar 

  66. Kresken M, Körber-Irrgang B, Korte-Berwanger M et al (2020) Dissemination of carbapenem-resistant Pseudomonas aeruginosa isolates and their susceptibilities to ceftolozane-tazobactam in Germany. Int J Antimicrob Agents 55:10595–10605. https://doi.org/10.1016/j.ijantimicag.2020.105959

    Article  CAS  Google Scholar 

  67. Abdeen ZI, El Farargy AF, Negm NA (2018) Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: preparation, characterization, swelling and antimicrobial evaluation. J Mol Liq 250:335–343. https://doi.org/10.1016/j.molliq.2017.12.032

    Article  CAS  Google Scholar 

  68. Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Evaluation nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10:501–523. https://doi.org/10.1186/s11671-015-1195-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yusof NAA, Zain NM, Pauzi N (2019) Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int J Biol Macromol 124:1132–1136. https://doi.org/10.1016/j.ijbiomac.2018.11.228

    Article  CAS  PubMed  Google Scholar 

  70. Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022

    Article  CAS  PubMed  Google Scholar 

  71. Bharathi D, Ranjithkumar R, Chandarshekar B, Bhuvaneshwari V (2019) Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: as a bionanocomposite. Int J Biol Macromol 129:989–996. https://doi.org/10.1016/j.ijbiomac.2019.02.061

    Article  CAS  PubMed  Google Scholar 

  72. Muraleedaran MRPK, Abdul Mujeeb VM (2015) Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int J Biol Macromol 77:266–272. https://doi.org/10.1016/j.ijbiomac.2015.03.058

    Article  CAS  PubMed  Google Scholar 

  73. Cloud RM, Cao W, Song G (2013) Functional finishes to improve the comfort and protection of apparel. In: Gulrajani ML (ed) Advances in the dyeing and finishing of technical textiles. Woodhead Publishing, Cambridge, pp 258–279

    Chapter  Google Scholar 

  74. Ammayappan L, Moses JJ (2009) Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fiber Polym 10:161–166. https://doi.org/10.1007/s12221-009-0161-2

    Article  CAS  Google Scholar 

  75. Lim SH, Hudson SM (2004) Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr Polym 56:227–234. https://doi.org/10.1016/j.carbpol.2004.02.005

    Article  CAS  Google Scholar 

  76. Zivanovic S, Davis RH, Golden DA (2015) Chitosan as an antimicrobial in food products. In: Taylor TM (ed) Handbook of natural antimicrobials for food safety and quality. Woodhead Publishing, Cambridge, pp 153–181

    Chapter  Google Scholar 

  77. Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128:1527–1536. https://doi.org/10.1007/s12039-016-1172-3

    Article  CAS  Google Scholar 

  78. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  79. Chang J, Waclawik ER (2012) Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles. J Nanopart Res 14:1012–1026. https://doi.org/10.1007/s11051-012-1012-4

    Article  CAS  Google Scholar 

  80. Paukku Y, Michalkova A, Leszczynski J (2009) Quantum-chemical comprehensive study of the organophosphorus compounds adsorption on zinc oxide surfaces. J Phys Chem C 113:1474–1485. https://doi.org/10.1021/jp807744a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumia Mekahlia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekahlia, S., Douadi, T. Chitosan–ZnO nanocomposite from a circular economy perspective: in situ cotton-used fabric recycling and the nanocomposite recovering. Polym. Bull. 79, 7491–7529 (2022). https://doi.org/10.1007/s00289-021-03859-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03859-8

Keywords

Navigation