Skip to main content
Log in

Chitosan assisted synthesis of ZnO nanoparticles: an efficient solar light driven photocatalyst and evaluation of antibacterial activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Chitosan is a biocompatible polymer used to control the particle size, crystalline phase and prevent the aggregation of ZnO nanoparticles. The sol–gel methodology was adopted for the synthesis of Chitosan assisted ZnO nanoparticles. Powder XRD, FE-SEM, UV–DRS and XPES studies have been used to characterise the nanoparticles. The results show that the structural analysis of ZnO nanoparticles is hexagonal structure and the particle size was about 91 nm. The synthesised nanoparticles show an enhanced photocatalytic activity under solar radiation for reactive dyes such as methyl orange and rhodamine B. The kinetics was found to follow a pseudo-first-order according to Langmiur–Hinshelwood (L–H) model. Also the antibacterial activity was checked against Gram-negative Escherichia coli bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Jothivenkatachalam, S. Prabhu, A. Nithya, S. Chandra Mohan, K. Jeganathan, Solar, visible and UV light photocatalytic activity of CoWO4 for the decolourisation of methyl orange. Desalin. Water Treat. 54, 3134–3145 (2015)

    Article  Google Scholar 

  2. J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method. Superlattices Microstruct. 50, 98–106 (2011)

    Article  Google Scholar 

  3. P.K. Giri, S. Bhattacharyya, B. Chetia, S. Kumari, D.K. Singh, P.K. Iyer, High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties. J. Nanosci. Nanotechnol. 11, 1–6 (2011)

    Article  Google Scholar 

  4. K. Suresh Babu, V. Narayanan, Hydrothermal synthesis of hydrated zinc oxide nanoparticles and its characterization. Chem. Sci. Trans. (2013). doi:10.7598/cst2013.004

    Google Scholar 

  5. G. Ambrozic, Z.C. Orel, M. Zigon, Microwave-assisted non-aqueous synthesis of ZnO nanoparticles. Mater. Technol. 45, 173–177 (2011)

    Google Scholar 

  6. S. Xiao, L. Liu, J. Lian, Solvothermal synthesis of nanocrystalline ZnO with excellent photocatalytic performance. J. Mater. Sci.: Mater. Electron. 25, 5518–5523 (2014)

    Google Scholar 

  7. C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, K.V. Bhaskara Rao, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A. 90, 78–84 (2012)

    Article  Google Scholar 

  8. J. Yang, X. Wang, T. Jiang, Y. Li, Q. Ma, J. Han, J. Chen, J. Wang, Y. Wang, Controllable preparation, growth mechanism and the properties research of ZnO nanocrystal. Superlattices Microstruct. (2014). doi:10.1016/j.spmi.2014.04.006

    Google Scholar 

  9. D. Han, J. Cao, S. Yang, J. Yang, B. Wang, Q. Liu, T. Wang, H. Niu, Fabrication of ZnO nanorods/Fe3O4 quantum dots nanocomposites and their solar light photocatalytic performance. J. Mater. Sci.: Mater. Electron. (2015). doi:10.1007/s10854-015-3372-x

    Google Scholar 

  10. S. Gao, S. Jiao, B. Lei, H. Li, J. Wang, Q. Yu, D. Wang, F. Guo, L. Zhao, Efficient photocatalyst based on ZnO nanorod arrays/p-type boron-doped-diamond heterojunction. J. Mater. Sci.: Mater. Electron. 26, 1018–1022 (2015)

    Google Scholar 

  11. K.J. Chen, T.H. Fang, F.Y. Hung, L.W. Ji, S.J. Chang, S.J. Young, Y.J. Hsiao, The crystallization and physical properties of Al-doped ZnO nanoparticles. Appl. Surf. Sci. 254, 5791–5795 (2008)

    Article  Google Scholar 

  12. B.M. Rajbongshi, A. Ramchiary, B.M. Jha, S.K. Samdarshi, Synthesis and characterization of plasmonic visible active Ag/ZnO Photocatalyst. J. Mater. Sci.: Mater. Electron. 25, 2969–2973 (2014)

    Google Scholar 

  13. R. Marschall, L. Wang, Non-metal doping of transition metal oxides for visible-lightphotocatalysis. Catal. Today (2013). doi:10.1016/j.cattod.2013.10.088

    Google Scholar 

  14. Q. Zhang, W. Fan, L. Gao, Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst. Appl. Catal. B 76, 168–173 (2007)

    Article  Google Scholar 

  15. B.M. Rajbongshi, S.K. Samdarshi, B. Boro, Multiphasic bi-component TiO2–ZnO nanocomposite: synthesis, characterization and investigation of photocatalytic activity under different wavelengths of light irradiation. J. Mater. Sci.: Mater. Electron. 26, 377–384 (2015)

    Google Scholar 

  16. A.M. Ali, A. Muhammad, A. Shafeeq, H.M.A. Asghar, S.N. Hussain, H. Sattar, Doped Metal Oxide (ZnO) and Photocatalysis: a review. J. Pak. Inst. Chem. Eng. 40, 11–19 (2012)

    Google Scholar 

  17. Y. Xu, C.H. Langford, Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y. J. Phys. Chem. B 101, 3115–3121 (1997)

    Article  Google Scholar 

  18. R. Chatti, S.S. Rayalu, N. Dubey, N. Labhsetwar, S. Devotta, Solar-based photoreduction of methyl orange using zeolite supported photocatalytic materials. Sol. Energy Mater. Sol. Cells 91, 180–190 (2007)

    Article  Google Scholar 

  19. S.T. Lin, M. Thirumavalavan, T.Y. Jiang, J.F. Lee, Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes. Carbohydr. Polym. (2014). doi:10.1016/j.carbpol.2014.01.017

    Google Scholar 

  20. K. Jothivenkatachalam, S. Prabhu, A. Nithya, K. Jeganathan, Facile synthesis of WO3 with reduced particle size on zeolite and enhanced photocatalytic activity. RSC Adv. 4, 21221–21229 (2014)

    Article  Google Scholar 

  21. Y.H. Tseng, C.S. Kuo, Y.Y. Li, C.P. Huang, Polymer-assisted synthesis of hydroxyapatite nanoparticle. Mater. Sci. Eng. C 29, 819–822 (2009)

    Article  Google Scholar 

  22. D. Wei, Y. Ye, X. Jia, C. Yuan, W. Qian, Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr. Res. 345, 74–81 (2010)

    Article  Google Scholar 

  23. A. Nithya, K. Jothivenkatachalam, S. Prabhu, K. Jeganathan, Chitosan based nanocomposite materials as photocatalyst—a review. Mater. Sci. Forum 781, 79–94 (2014)

    Article  Google Scholar 

  24. P.T. Sudheesh Kumar, V. Lakshmanan, T.V. Anilkumar, C. Ramya, P. Reshmi, A.G. Unnikrishnan, S.V. Nair, R. Jayakumar, Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. Appl. Mater. Interfaces 4, 2618–2629 (2012)

    Article  Google Scholar 

  25. Z. Zainal, L.K. Hui, M.Z. Hussein, A.H. Abdullah, I.R. Hamadneh, Characterization of TiO2–Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. J. Hazard. Mater. 164, 138–145 (2009)

    Article  Google Scholar 

  26. M.A. Nawi, S. Sabar, A.H. Jawad, Sheilatina, W.S. Wan Ngah, Adsorption of Reactive Red 4 by immobilized chitosan on glass plates: towards the design of immobilized TiO2–chitosan synergistic photocatalyst-adsorption bilayer system. Biochem. Eng. J. 49, 317–325 (2010)

    Article  Google Scholar 

  27. J.Y. Chen, P.J. Zhou, J.L. Li, Y. Wang, Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light. Carbohydr. Polym. 72, 128–132 (2008)

    Article  Google Scholar 

  28. J. Ru, Z. Huayue, L. Xiaodong, X. Ling, Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite nanoparticles. Chem. Eng. J. 152, 537–542 (2009)

    Article  Google Scholar 

  29. R. Salehi, M. Arami, N.M. Mahmoodi, H. Bahrami, S. Khorramfar, Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids Surf. B 80, 86–93 (2010)

    Article  Google Scholar 

  30. Y. Haldorai, J.J. Shim, Chitosan–Zinc Oxide hybrid composite for enhanced dye degradation and antibacterial activity. Compos. Interface 20, 365–377 (2013)

    Article  Google Scholar 

  31. R. Khan, A. Kaushik, P.R. Solanki, A.A. Ansari, M.K. Pandey, B.D. Malhotra, Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta 616, 207–213 (2008)

    Article  Google Scholar 

  32. I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T.J. Mason, M. Blanes, K. Molla, A. Patlolla, A.I. Frenkele, A. Gedanken, Chitosan and chitosan–ZnO based complex nanoparticles: formation, characterization, and antibacterial activity. J. Mater. Chem. B. 1, 1968–1976 (2013)

    Article  Google Scholar 

  33. P.T. Sudheesh Kumar, V. Lakshmanan, R. Biswas, S.V. Nair, R. Jayakumar, Synthesis and biological evaluation of chitin hydrogel/nano Zno composite bandage as antibacterial wound dressing. J. Biomed. Nanotechnol. 8, 1–10 (2012)

    Article  Google Scholar 

  34. P.T. Sudheesh Kumar, V. Lakshmanan, M. Raj, R. Biswas, T. Hiroshi, S.V. Nair, R. Jayakumar, Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm. Res. 30, 523–537 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandasamy Jothivenkatachalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithya, A., Jothivenkatachalam, K. Chitosan assisted synthesis of ZnO nanoparticles: an efficient solar light driven photocatalyst and evaluation of antibacterial activity. J Mater Sci: Mater Electron 26, 10207–10216 (2015). https://doi.org/10.1007/s10854-015-3710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3710-z

Keywords

Navigation