Skip to main content
Log in

Preparation of PANI-coated hollow glass microsphere and its application in dual-band stealth coated fabric

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dual-band stealth fabric was prepared by the specific procedure, as stated below: firstly, doping the polyaniline-plated hollow glass microspheres (PANI/HGMs) with the ZnO nanoparticles; subsequently, coating the aforesaid obtained substance on the Ag-deposited cellulose fabric. PANI/HGMs were produced via the in-situ polymerization of the polyaniline (PANI). And besides, the Ag-deposited cellulose fabric was prepared by the magnetron sputtering system. The scanning electron microscopy (SEM) was used to characterize the surface morphology of the coated fabric. Intended for the evaluation of the stealth effect, the infrared thermal imaging instrument and electromagnetic stealth tester were employed. The micro-structure during the reaction of coated fabric was verified through Fourier transform infrared (FTIR) and x-ray diffraction (XRD). Not only the temperature difference between upper and lower surfaces but also the results of thermal gravimetric analysis (TGA) further express the thermal stability. The coated fabric shows favorable infrared (IR) stealth effect and excellent electromagnetic interference (EMI) stealth effect, under the synergy of PANI, Ag mirror structure and ZnO nanoparticles. In addition, the EMI effect of − 50 dB can be realized at the band of 0–3 GHZ, that’s because the PANI absorbs the microwaves and the silver reflects a large number of microwaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cui Y, Gong H, Wang Y, Li D, Bai H (2018) A thermally insulating textile inspired by polar bear hair. Adv Mater. 30(141706807):1–1706807. https://doi.org/10.1002/adma.201870098

    Article  Google Scholar 

  2. Bychanok D, Li S, Sanchez A et al (2016) Hollow carbon spheres in microwaves: bio inspired absorbing coating. Appl Phys Lett 1(108):013701. https://doi.org/10.1063/1.4938537

    Article  CAS  Google Scholar 

  3. Zhang Z, Xu M, Ruan X, Yan J, Yun J (2017) Enhanced radar and infrared compatible stealth properties in hierarchical SnO2@ZnO nano structures. Ceram Int 3:3443–344. https://doi.org/10.1016/j.ceramint.2016.11.034

    Article  CAS  Google Scholar 

  4. Sun G, Dong B, Cao M et al (2013) Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23:1587–1593. https://doi.org/10.1021/cm103441u

    Article  CAS  Google Scholar 

  5. Chen B, Zhang C (2006) Application of infrared stealth technology in military. Opt Tech 32:577–580

    Google Scholar 

  6. Huang XG, Zhang MJ, Qin YS, Chen YY (2019) Bead-like Co-doped ZnO with improved microwave absorption properties. Ceram Int. 6:45. https://doi.org/10.1016/j.ceramint.2019.01.084

    Article  CAS  Google Scholar 

  7. Wang Yu, Wang W, Qi QB et al (2020) Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27:2829–2845. https://doi.org/10.1007/s10570-019-02949-1

    Article  CAS  Google Scholar 

  8. Kong LB, Li ZW, Liu L et al (2013) Recent progress in some composite materials and structures for specific electromagnetic applications. Int Mater Rev 58:203–259. https://doi.org/10.1179/1743280412Y.0000000011

    Article  CAS  Google Scholar 

  9. Maeda T, Sugimoto S, Kagotani T et al (2004) Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. J Magn Magn Mater 2:195–205. https://doi.org/10.1016/j.jmmm.2004.04.105

    Article  CAS  Google Scholar 

  10. Akamine S (2020) Development of thermal insulating material with low emissivity and high-temperature stability. Int J Appl Ceram Tech 17:2. https://doi.org/10.1111/ijac.13369

    Article  CAS  Google Scholar 

  11. Andersson SK, Staaf O, Olsson PO et al (1998) Infrared properties of β-sialon as a function of composition. Opt Mater 10:85–93. https://doi.org/10.1016/S0925-3467(97)00146-8

    Article  CAS  Google Scholar 

  12. Bityukov VK, Khudak YI, Gusein NG (2018) Analytical derivation of the stefan-boltzmann law for integral radiance from planck’s law for spectral radiance. B LEBEDEV PHYS INST. 45:46–50. https://doi.org/10.3103/S1068335618020033

    Article  Google Scholar 

  13. Gu WH, Tan JW, Chen JB (2020) Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl Mater Inter 12:25. https://doi.org/10.1021/acsami.0c09202

    Article  CAS  Google Scholar 

  14. Wang K, Ma Q, Zhang Y et al (2020) Ag nps-assisted synthesis of stable cu nps on pet fabrics for antibacterial and electromagnetic shielding performance. Polymers 12:783

    Article  CAS  Google Scholar 

  15. Asghar A, Ahmad MR, Yahya MF et al (2018) An alternative approach to design conductive hybrid cover yarns for efficient electromagnetic shielding fabrics. J IND TEXT 48:38–57. https://doi.org/10.1177/1528083717721922

    Article  Google Scholar 

  16. Fu H, Yang Z, Zhang Y et al (2020) SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon 162:490–496. https://doi.org/10.1016/j.carbon.2020.02.081

    Article  CAS  Google Scholar 

  17. Zahidul Islam MD, Dong YB, Khoso NA et al (2019) Continuous dyeing of graphene on cotton fabric: Binder-free approach for electromagnetic shielding. Applied Surface ence. https://doi.org/10.1016/j.apsusc.2019.143636

    Article  Google Scholar 

  18. Dakshayini BS et al (2019) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchemical Journal 147(7–24):2019. https://doi.org/10.1016/j.microc.2019.02.061

    Article  CAS  Google Scholar 

  19. Manigandan S et al (2019) Effects of nanoadditives on emission characteristics of engine fuelled with biodiesel. Energy Sources Part A Recovery Utilization & Environmental Effects. https://doi.org/10.1080/15567036.2019.1587048

    Article  Google Scholar 

  20. Long J, Jiang CW, Zhu JD et al (2020) Controlled TiO2 coating on hollow glass microspheres and their reflective thermal insulation properties. Particuology 49:33–39. https://doi.org/10.1016/j.partic.2019.03.002

    Article  CAS  Google Scholar 

  21. Xu R, Wang W, Yu D (2019) Preparation of silver-plated hollow glass microspheres and its application in infrared stealth coating fabrics. Progress in Organic Coatings 131:1–10. https://doi.org/10.1016/j.porgcoat.2019.02.009

    Article  CAS  Google Scholar 

  22. Reddy KR et al (2019) Organic Conjugated Polymer-Based Functional Nanohybrids. Polymer Composites with Functionalized Nanoparticles. https://doi.org/10.1016/B978-0-12-814064-2.00011-1

    Article  Google Scholar 

  23. Prabhu R et al (2021) Novel polyaniline-fly ash nanohybrids synthesized via inverted emulsion polymerization: Physico-chemical, thermal and dielectric properties. Materials Science for Energy Technologies 4:107–112. https://doi.org/10.1016/j.mset.2021.02.001

    Article  CAS  Google Scholar 

  24. Prabhu R et al (2021) Novel conjugated polymer/[Cu2Cl4(m-aminophenylbenzimidazole)3] hybrid composites: synthesis, characterization and electrochemical properties. Materials Science for Energy Technologies. 4:92–99. https://doi.org/10.1016/j.mset.2021.01.001

    Article  CAS  Google Scholar 

  25. Tang XH, Li J, Tan YJ et al (2020) Achieve high performance microwave shielding in poly(ε-caprolactone)/multi-wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces. Appl Sur Sci 1:508. https://doi.org/10.1016/j.apsusc.2019.145178

    Article  CAS  Google Scholar 

  26. Boukhris I, Al-Buriahi MS, Akyildirim H et al (2020) Chalcogenide glass-ceramics for radiation shielding applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.04.281

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fan XM, Yuan RZ, Li X et al (2020) RGO-supported core-shell SiO2 @SiO2 /carbon microsphere with adjustable microwave absorption properties. Ceram Int 46:14985–14993. https://doi.org/10.1016/j.ceramint.2020.03.028

    Article  CAS  Google Scholar 

  28. Dong X, Wang M, Tao X et al (2020) Properties of heat resistant hollow glass microsphere/phosphate buoyancy materials with different coatings. Ceram Int 46:415–420. https://doi.org/10.1016/j.ceramint.2019.08.277

    Article  CAS  Google Scholar 

  29. Gao G, Hu Y, Jia H et al (2019) Acoustic and dielectric properties of epoxy resin/hollow glass microsphere composite acoustic materials. J Phys chem solids. https://doi.org/10.1016/j.jpcs.2019.109105

    Article  Google Scholar 

  30. Mohammed I, Ariful R, Soumen P (2020) Effect of low concentration hollow glass microspheres on mechanical and thermomechanical properties of epoxy composites. Polym Composite 40:3493–3499. https://doi.org/10.1002/pc.25211

    Article  CAS  Google Scholar 

  31. Zhang YL, Zang CG, Jiao QJ et al (2020) Heat-insulating materials with high-temperature resistance through binding hollow glass microspheres with vinyl-functionalized polyborosiloxane. J Mater Sci. https://doi.org/10.1007/s10853-020-05046-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang W, Zhang X, Wu Z et al (2019) Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2019.107966

    Article  Google Scholar 

  33. Gupta S, Chang C, Lai CH, Tai NH (2019) Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding. Compos part b-eng 164:447–457. https://doi.org/10.1016/j.compositesb.2019.01.060

    Article  CAS  Google Scholar 

  34. Ali O, Sahar S (2018) Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber. J Magn Magn Mater 458:335–345. https://doi.org/10.1016/j.jmmm.2018.03.050

    Article  CAS  Google Scholar 

  35. Li Q, Zhang Z, Qi LP et al (2019) Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv Sci 6:1801057. https://doi.org/10.1002/advs.201801057

    Article  CAS  Google Scholar 

  36. Qi YJ, Qi L, Liu LP et al (2019) Facile synthesis of lightweight carbonized hydrochars decorated with dispersed ZnO nanocrystals and enhanced microwave absorption properties. Carbon 150:259–267. https://doi.org/10.1016/j.carbon.2019.05.026

    Article  CAS  Google Scholar 

  37. Seung HL, Seunggun Y, Faisal S et al (2019) Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction. Compos sci technol. https://doi.org/10.1016/j.compscitech.2019.107778

    Article  Google Scholar 

  38. Ghosh S, Ganguly S, Das P et al (2019) (2019) Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fiber Polym 20:1161–1171. https://doi.org/10.1007/s12221-019-1001-7

    Article  CAS  Google Scholar 

  39. Jia LC, Xu L, Ren F et al (2019) Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144:101–108. https://doi.org/10.1016/j.carbon.2018.12.034

    Article  CAS  Google Scholar 

  40. Tan YJ, Li J, Gao Yu et al (2018) A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl surf sci 458:236–244. https://doi.org/10.1016/j.apsusc.2018.07.107

    Article  CAS  Google Scholar 

  41. Zhang N, Huang Y, Wang MY et al (2018) Design and microwave absorption properties of thistle-like CoNi enveloped in dielectric Ag decorated graphene composites. J Colloid interf sci 18:31087. https://doi.org/10.1016/j.jcis.2018.09.016

    Article  CAS  Google Scholar 

  42. Zhang Y, Pan T, Yang ZJ (2020) Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124433

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gill N, Gupta V, Tomar M et al (2020) Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2020.108113

    Article  Google Scholar 

  44. Saboor A, Khalid SM, Jan R et al (2019) PS/PANI/MoS2 hybrid polymer composites with high dielectric behavior and electrical conductivity for EMI shielding effectiveness. Materials 12:2690. https://doi.org/10.3390/ma12172690

    Article  CAS  PubMed Central  Google Scholar 

  45. Syed K (2019) Polyaniline-Graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys 12:1073–1081. https://doi.org/10.1016/j.rinp.2018.12.087

    Article  Google Scholar 

  46. Liu F, Li YC, Hao S et al (2020) Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116467

    Article  Google Scholar 

  47. Sjogren B, Stafstrom S (1988) Electronic excitations in polyaniline - an indo s-cl study. J. Chem. Phys. 88:3840–3847. https://doi.org/10.1063/1.453885

    Article  Google Scholar 

  48. Wang Y, Wang W, Yu D (2017) Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high microwave absorption performance. Appl. Surf. Sci. 425:518–525. https://doi.org/10.1016/j.apsusc.2017.07.062

    Article  CAS  Google Scholar 

  49. Mahesh B et al (2019) Miscibility studies of plastic-mimetic polypeptide with hydroxypropylmethylcellulose blends and generation of non-woven fabrics. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2019.02.042

    Article  PubMed  Google Scholar 

  50. Kang JF et al (2020) Structure, dielectric property and viscosity of alkali-free boroaluminosilicate glasses with the substitution of Al2O3 for SiO2. Journal of Non-Crystalline Solids. https://doi.org/10.1016/j.jnoncrysol.2020.120022

    Article  Google Scholar 

  51. Bora MM, Deka C et al (2018) Alkyds from red silkcotton (Bombax ceiba) seed oil and investigation on their microbial degradation. Prog. Org. Coat. 124:71–79. https://doi.org/10.1016/j.porgcoat.2018.08.008

    Article  CAS  Google Scholar 

  52. Yakushin V et al (2013) Synthesis and ChaCation of Novel Polyurethanes Based on Tall Oil. Materials Science-medziagotyra 19(4): 390–396. https://doi.org/10.5755/j01.ms.19.4.2666

  53. Nanjundaswamy GS, Mahesh B, Channe GD (2018) Elastin-based polymer; synthesis, characterization and examination of its miCc characteristics with polyvinylalcohol and electrospinning of the miscible blends. Polymer International. Doi: https://doi.org/10.1002/pi.5669

  54. Ghahfarokhi S, Ahmadi M, Kazeminezhad I (2021) Effect of the pani content on curie temperature and microwave absorption properties of Srfe 11 MnO19 /Cofe1.9Bi0.1O4 nanocomposite. Appl Phys A-Mater 127: 401. https://doi.org/10.1007/s00339-021-04556-z

  55. Simdar M, Mousavi SS, Sajad B et al (2021) Distinctive ZnO films structures and morphologies for different modes of the heating substrate. Materials Letters. https://doi.org/10.1016/j.matlet.2021.129914

    Article  Google Scholar 

  56. Li lL, Dan Y, et al (2012) Electroless silver plating on the PET fabrics modifified with 3-mercaptopropyltriethoxysilane. J Appl Polym Sci 124:1912–1918. https://doi.org/10.1016/j.apsusc.2015.06.126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11702169), Talents Action Program of Shanghai University of Engineering Science (Grant No. 2017RC522017), Shanghai Local Capacity-Building Project (Grant No. 19030501200) and Research and Innovation Project of Shanghai University of Engineering Science (Grant No. 20KY0901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binjie Xin or Zhuoming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Xin, B., Chen, Z. et al. Preparation of PANI-coated hollow glass microsphere and its application in dual-band stealth coated fabric. Polym. Bull. 79, 7555–7570 (2022). https://doi.org/10.1007/s00289-021-03854-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03854-z

Keywords

Navigation