Skip to main content
Log in

Theoretical study of the effect of the plant and synthetic fibers on the fiber-matrix interface damage of biocomposite materials based on PHAs (polyhydroxyalkanoates) biodegradable matrix

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The natural plant fibers and biopolymers are a very important alternative to replace the inorganic fibers most used in the mechanical reinforcement of composite materials (carbon, glass, …) and synthetic polymers (Epoxy, PEEK, …), and at the same time they have a very low environmental impact and a very reasonable price. In this article, we have studied, by a numerical simulation based on genetic approach, the fiber-matrix interface damage of composite materials made up from the PHA (polyhydroxyalkanoates) matrix and the carbon, glass, jute, and hemp reinforcements with the same volume fraction equal to 30% for each fiber chosen. Our results showed that the damage at the fiber-matrix interface of the biocomposite hemp/PHA is the lowest compared with the other biocomposite materials glass/PHA, jute/PHA, and carbon/PHA. This finding is similar to that found by Antoine Le Duigou et al. and Bodros et al., where they have shown experimentally that the natural reinforcements greatly improve the properties of composite materials and also they have a very low environmental impact. To our knowledge, no published research reports on the study of fiber-matrix interface damage of biocomposite materials based on PHAs and carbon, glass, jute, and hemp fibers for potential textile applications, packaging, and other interesting areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. Baley (2013) Fibres naturelles de renfort pour matériaux composites. Tecniques de l’ingénieur, vol. AM 5 130v2, pp. 1–17.

  2. Duy Cuong Ngyen (2016) Caractérisation de l’interface fibre/matrice. Thèse de Doctorat à l’université de TROYES, Application aux composites polypropylène/chanvre

    Google Scholar 

  3. AhnParkLee WSSJSY (2001) Production of Poly(3-Hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia Coli. Biotechnol Lett 23:235

    Article  Google Scholar 

  4. Feliu, J. X., R. Cubarsi, and A. Villaverde (1998) Optimized release of recombinant proteins by ultrasonication of E. coli Cells. Biotechnol Bioeng 58, p 536.

  5. Garcia LilloRodriguez-Valera JAF (1990) Effects of culture conditions on Poly(β-Hydroxybutyric acid) production by haloferax mediterranei. Appl Environ Microbiol 56:2517

    Article  Google Scholar 

  6. Hrabak O (1992) Industrial production of Poly-β-Hydroxybutyrate. FEMS Microbiol Rev 103:251

    CAS  Google Scholar 

  7. KhannaSrivastava SAK (2005) Statistical media optimization studies for growth and PHB production by Ralstonia Eutropha. Process Biochem 40:2173

    Article  Google Scholar 

  8. ReschGruberWannerSlaterDennisLubitz SKGSDW (1998) Aqueous release and purification of Poly(β-Hydroxybutyrate) from Escherichia Coli. J Biotechnol 65:173

    Article  Google Scholar 

  9. SudeshAbeDoi KHY (2000) Synthesis, structure and properties of Polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503

    Article  Google Scholar 

  10. ZhangDengHuang LXZ (1997) Miscibility, thermal behaviour and morphological structure of Poly(3-Hydroxybutyrate) and ethyl cellulose binary blends. Polymer 38(21):5379

    Article  Google Scholar 

  11. BugnicourtCinelliLazzeriAlvarez EPAV (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  Google Scholar 

  12. LakshmanShamala KTR (2003) Enhanced biosynthesis of polyhydroxyalkanoates in a mutant strain of Rhizobium Meliloti. Biotechnol Lett 25:115–119

    Article  Google Scholar 

  13. PadovaniCarlozziSeggianiCinelliVitoloLazzeri GPMPSA (2016) PHB-rich biomass and BioH2 production by means of photosynthetic microorganisms. Chem Eng Trans 49:55–60

    Google Scholar 

  14. Lemoigne M (1926) Produit de déshydratation et de polymérisation de l’acide béta-oxybutyrique. Bulletins de la Société de Chimie Biologique 8:770–782

    CAS  Google Scholar 

  15. Lemoigne M (1927) Etudes sur l’autolyse microbienne. Origine de l’acide 1-oxobutyrique formé par autolyse. Annales de l’Institut Pasteur (Paris) 41:148–165

    CAS  Google Scholar 

  16. ForsythHaywardRoberts WGCACJB (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 182(4638):800–801

    Article  Google Scholar 

  17. WallenRohwedde LLWK (1974) Poly- beta- hydroxyalkanoate from activated sludge. Environl Sci Technol 8(6):576–579

    Article  Google Scholar 

  18. ChanVandiPrattHalleyRichardsonWerkerLaycock CML-JSPDAB (2018) Composites of wood and biodegradable thermoplastics: a review. Polym Rev 58(3):444–494

    Article  Google Scholar 

  19. GuoTaoYangSongGengLiWangKongWang WJCCWQYMS (2012) Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers. PLoS One 7(5):e38341

    Article  Google Scholar 

  20. Zhao H, Turng L S (2015) Mechanical performance of microcellular injection molded biocomposites from green plastics: PLA and PHBV. Biocomposites: design and mechanical performance. pp 141–160. https://doi.org/10.1016/B978-1-78242-373-7.00015-9

  21. Silva N (2008) Etat de la connaissance scientifique sur les fibres végétales. tech. rep., FRD (Fibres Recherche Développement), Troyes.

  22. Nardin M (2016) Interface fibre-matrice dans les materiaux composites. Revue des Compos et des Matériaux Avancés 16(1):49–62

    Article  Google Scholar 

  23. MokaddemAlamiBoutaous AMA (2012) A study by a genetic algorithm for optimizing the arrangement of the fibers on the damage to the fiber–matrix interface of a composite material. J Text Inst 103(12):1376–1382

    Article  Google Scholar 

  24. BenyaminaMokaddemDoumi BAB et al (2021) Study and modeling of thermomechanical properties of jute and Alfa fiber-reinforced polymer matrix hybrid biocomposite materials. Polym Bull 78:1771–1795. https://doi.org/10.1007/s00289-020-03183-7

    Article  CAS  Google Scholar 

  25. AtigMokaddemMeskineDoumiBelkheirElkeurti KAMBMM (2019) Using genetic algorithms to study the effect of cellulose fibers ratio on the fiber-matrix interface damage of biocomposite materials. Recent Patent Mater Sci 12(1):83–90

    Google Scholar 

  26. Weibull, W (1 939) A statistical theory of the strength of materials. Royal Swedish academy of english science proceedings, 151, 1–45.

  27. GognaKumarAnuragSahoo ERAKAP (2019) A comprehensive review on jute fiber reinforced composites. Adv Ind Prod Eng. https://doi.org/10.1007/978-981-13-6412-9_45

    Article  Google Scholar 

  28. Ilczyszyn F (2013) Caractérisation expérimentale et numérique du comportement mécanique des agro-composites renforcés par des fibres de chanvre. Université de technologie de Troyes, Thèse de doctorat

    Google Scholar 

  29. Jacquel N et al (2007) Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. AlChE J 53(10):2704–2714

    Article  CAS  Google Scholar 

  30. Jacquel N et al (2008) Isolation and purification of bacterial poly(3 hydroxyalkanoates. Biochem Eng J 39(1):15–27

    Article  CAS  Google Scholar 

  31. HwangYouDon K-JS-FT-M (2006) Disruption kinetics of bacterial cells during purification of Poly-β-Hydroxyalkanoate using ultrasonication. J Chin Inst Chem Engrs 37(3):1–8

    Google Scholar 

  32. LenzMarchessault RWRH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 6:1–8

    Article  Google Scholar 

  33. Vincent Mathel (2016) Etude de la cristallisation du polyhydroxybutyrate. Université de Sherbrooke, (Québec) Canada.

  34. Innocentini-MeiBartoliBaltieri LHJRRC (2003) Mechanical and thermal properties of poly(3-hydroxybutyrate) blends with starch and starch derivatives. Macromol Symp 197:77–88. https://doi.org/10.1002/masy.200350708

    Article  CAS  Google Scholar 

  35. Shen L., Haufe J., Patel M. (2009) Product overview and market projection of emerging bio-based plastics. PRO-BIP 2009, Final report, Utrecht.

  36. Marcel Leiner de Sá .,Érica Melo de Carvalho., Julienne Calvacante., Luis Miguel Araque., José Francisco Reis Sobrinho., Renata Barbosa (2018) Biodegradation of poly(3-hydroxybutyrate) Eggshell systems. Mat Res vol.21 no.4, 1–10. e20170792

  37. Favre, J.-P (1992) Interface dans les composites fibreux. Techniques de l’ingénieur. Plastiques et Composites. vol. AM6, no. A7765, pp A7765.1–A7765.21.

  38. LiPickeringFarrell YKR (2009) Determination of interfacial shear strength of white rot fungi treated hemp fibre reinforced polypropylene. Compos Sci Technol 69:1165–1171

    Article  Google Scholar 

  39. P Ladevèse G Lubineau 2003 Pont entre micro et méso mécaniques des composites stratifies Elsevier, Composites Rendus Mécanique 331, 537–544

  40. Lissart N (1997) Damage and failure in ceramic matrix minicomposites: experimental study and model. Acta Mater 45:1025–1044

    Article  CAS  Google Scholar 

  41. Sébastien Grange, Jean-Loup Prensier (2006) Annexe: determination des paramètres de Weibull le modèle de Weibull: un critère de rupture probabiliste. Université Paris-Saclay, 01/07/2006 http://eduscol.education.fr/sti/si-ens-cachan/

  42. A.Mokaddem, M.Alami, L.Temimi et A. Boutaous (2012) Study of the effect of heat stress on the damage of the fibre matrix interface of a composite material (T300/914) by means of a genetic algorithm. Fibers Text East Eur; 20, 6A(95), 108–111.

  43. LahouariTemimiMokaddemBelkaidBouamrane HANABR (2013) Study of the effect of water intake by the matrix on the optimization of the fiber matrix interface damage for a composite material by genetic algorithms. Strength Mater 46:543–547

    Google Scholar 

  44. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 12:72–79

    Article  Google Scholar 

  45. Bodros E et al (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Comp Sci Technol 67(3–4):462–470

    Article  CAS  Google Scholar 

  46. Le Duigou A et al (2008) Effect of recycling on mechanical behavior of biocompostable flax/poly (l-lactide) composites. Comp Part A 39(9):1471–1478

    Article  Google Scholar 

  47. LeLe DuigouKervoelenGrandNardinBaley AAAMC (2014) Interfacial properties of flax fibre–epoxy resin systems: existence of a complex interphase. Compos Sci Technol 100:152–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allel Mokaddem, Bendouma Doumi or Ahmed Boutaous.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaouche, N., Mebrek, M., Mokaddem, A. et al. Theoretical study of the effect of the plant and synthetic fibers on the fiber-matrix interface damage of biocomposite materials based on PHAs (polyhydroxyalkanoates) biodegradable matrix. Polym. Bull. 79, 7281–7301 (2022). https://doi.org/10.1007/s00289-021-03849-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03849-w

Keywords

Navigation