Skip to main content

Advertisement

Log in

Influence of TiO2 nanoparticles on structural, optical, dielectric and electrical properties of bio-compatible PEOX–PVP–TiO2 nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly (2-ethyl-2-oxazoline)-poly (vinylpyrrolidone)-titanium dioxide [PEOX–PVP–TiO2] hybrid nanocomposites were obtained by the reinforcement of TiO2 nanoparticles to pure PEOX–PVP blend by a solution intercalation method. FESEM images indicate good dispersion of TiO2 nanoparticles in PEOX–PVP matrix. The crystallite size and crystallinity of nanocomposites were evaluated from XRD spectra. The peaks shift in FTIR spectra indicates the intermolecular interaction between PEOX-PVP blend and TiO2 nanoparticles. Optical characteristics such as energy band gap, Urbach energy and Fermi energy were calculated. The energy band gap and Fermi energy decrease, whereas Urbach energy increases with increase in TiO2 weight percentage. The dielectric constant and dielectric loss of PEOX–PVP–TiO2 nanocomposites decrease with increase in frequency of the electric field, whereas the AC electrical conductivity increases with increase in frequency. The dielectric loss and dielectric constant values of the nanocomposites were found to increase with increasing TiO2 concentration. Relaxation time, obtained from Cole–Cole plot, decreases with increasing TiO2 concentration. PEOX–PVP–15 wt% TiO2 nanocomposite having enhanced optical, dielectric and electrical properties can be used for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liao CZ, Bao SP, Tjong SC (2011) Microstructure and fracture behavior of maleated high-density polyethylene/silicon carbide nanocomposites toughened with poly (styrene-ethylene-butylene-styrene) triblock copolymer. Adv Polym Technol 30(4):322–333

    CAS  Google Scholar 

  2. Mano V, Silva RE, MES, Barbani N, Giusti P (2004) Binary blends based on poly (N-isopropylacrylamide): Miscibility studies with PVA, PVP, and PAA. J Appl Polym Sci 92(2):743–748

    CAS  Google Scholar 

  3. Nicho M, García-Escobar C, Arenas M, Altuzar-Coello P, Cruz-Silva R, Güizado-Rodríguez M (2011) Influence of P3HT concentration on morphological, optical and electrical properties of P3HT/PS and P3HT/PMMA binary blends. Mater Sci Eng, B 176(17):1393–1400

    CAS  Google Scholar 

  4. Ramesan MT, Varghese M, Periyat P (2018) Silver-doped zinc oxide as a nanofiller for development of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend nanocomposites. Adv Polym Technol 37(1):137–143

    CAS  Google Scholar 

  5. Su FH, Zhang ZZ (2009) Friction and wear behavior of glass fabric/phenolic resin composites with surface-modified glass fabric. J Appl Polym Sci 112(2):594–601

    CAS  Google Scholar 

  6. Wang N, Yu J, Ma X (2008) Preparation and characterization of compatible thermoplastic dry starch/poly (lactic acid). Polym Compos 29(5):551–559

    CAS  Google Scholar 

  7. Wang X, Bazuin CG, Pellerin C (2015) Effect of small molecule hydrogen-bond crosslinker and solvent power on the electrospinnability of poly (4-vinyl pyridine). Polymer 57:62–69

    CAS  Google Scholar 

  8. Bakar NA, Chee CY, Abdullah LC, Ratnam CT, Ibrahim NA (2015) Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Mater Des 1980–2015(65):204–211

    Google Scholar 

  9. Abdelrazek E, Elashmawi I, El-Khodary A, Yassin A (2010) Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr Appl Phys 10(2):607–613

    Google Scholar 

  10. Baraker BM, Lobo B (2016) Experimental study of PVA-PVP blend films doped with cadmium chloride monohydrate. Indian J Pure Appl Phys 54:634–640

    Google Scholar 

  11. Goswami A, Bajpai A, Bajpai J, Sinha B (2018) Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior. Polym Bull 75(2):781–807

    CAS  Google Scholar 

  12. Arlindo EPS, Lucindo JA, Bastos CM, Emmel PD, Orlandi MO (2012) Electrical and optical properties of conductive and transparent ITO@ PMMA nanocomposites. J Phys Chem C 116(23):12946–12952

    CAS  Google Scholar 

  13. El-Toony M (2011) Synthesis of GMA/PVA cast membrane reinforced with alumina for fuel cell applications. Nat Sci 9(12):160–172

    Google Scholar 

  14. Gu G, Zhang Z, Dang H (2004) Preparation and characterization of hydrophobic organic–inorganic composite thin films of PMMA/SiO2/TiO2 with low friction coefficient. Appl Surf Sci 221(1–4):129–135

    CAS  Google Scholar 

  15. Karami H (2010) Investigation of sol-gel synthesized CdO-ZnO nanocomposite for CO gas sensing. Int J Electrochem Sci 5:720–730

    CAS  Google Scholar 

  16. Loh KJ, Chang D (2011) Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J Mater Sci 46(1):228–237

    CAS  Google Scholar 

  17. Saikia D, Saikia P, Gogoi P, Saikia P (2011) Synthesis, characterization and photovoltaic application of silver doped CdS/PVA nanocomposite thin films. Dig J Nanomater Biostruct 6:589–597

    Google Scholar 

  18. Singhal A, Kaur M, Dubey K, Bhardwaj Y, Jain D, Pillai C, Tyagi A (2012) Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties. RSC Adv 2(18):7180–7189

    CAS  Google Scholar 

  19. Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR (2011) Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural/dielectric composites. Polymer 52(9):2016–2024

    CAS  Google Scholar 

  20. Su W, Wang S, Wang X, Fu X, Weng J (2010) Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf Coat Technol 205(2):465–469

    CAS  Google Scholar 

  21. Tintu R, Saurav K, Sulakshna K, Nampoori V, Radhakrishnan P, Thomas S (2010) Ge28Se60Sb12/PVA composite films for photonic applications. J Non-Oxide Glasses 2(4):167–174

    Google Scholar 

  22. Yahya N, Akhtar MN, Masuri A, Kashif M (2011) Synthesis and characterization of ZnO-CNTs filled PVA composite as EM detector. J Appl Sci 11(8):1303–1308

    CAS  Google Scholar 

  23. Wang Y-J, Kim D (2007) Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 52(9):3181–3189

    CAS  Google Scholar 

  24. Kiesow A, Morris J, Radehaus C, Al H (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94(10):6988–6990

    CAS  Google Scholar 

  25. Kahattha C, Pecharapa W (2018) Effect of titanium loading on physical properties of nanowhisker-like Ti-doped vanadium oxide synthesized by hydrothermal method. Materials Today: Proceedings 5(6):14116–14120

    CAS  Google Scholar 

  26. Poumellec B, Durham P, Guo G (1991) Electronic structure and X-ray absorption spectrum of rutile TiO2. J Phys: Condens Matter 3(42):8195

    CAS  Google Scholar 

  27. Rashad M, Shalan A (2012) Synthesis and optical properties of titania-PVA nanocomposites. Int J Nanoparticles 5(2):159–169

    CAS  Google Scholar 

  28. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898

    CAS  PubMed  Google Scholar 

  29. Khan S, Qazi IA, Hashmi I, Ali Awan M, N-u-SS Z (2013) Synthesis of silver-doped titanium TiO 2 powder-coated surfaces and its ability to inactivate pseudomonas aeruginosa and bacillus subtilis. J Nanomater 2013:8

    Google Scholar 

  30. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma A, Rao VN (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B 406(9):1706–1712

    Google Scholar 

  31. Arthi R, Jaikumar V, Muralidharan P (2021) Comparative performance analysis of electrospun TiO2 embedded poly(vinylidene fluoride) nanocomposite membrane for supercapacitors. J Appl Polym Sci 138(18):50323. https://doi.org/10.1002/app.50323

    Article  CAS  Google Scholar 

  32. Muthusamy S, Charles J, Renganathan B, Ganesan AR (2021) Ternary polypyrrole/prussian blue/TiO2 nanocomposite wrapped poly-methyl methacrylate fiber optic gas sensor to detect volatile gas analytes. Optik 230:166289. https://doi.org/10.1016/j.ijleo.2021.166289

    Article  CAS  Google Scholar 

  33. Khasim S, Pasha A, Hatem Al A, Badi N, Imran M, Al-Ghamdi SA. (2021) Development of high-performance flexible and stretchable sensor based on secondary doped PEDOT–PSS:TiO2 nanocomposite for room-temperature detection of nitric oxide. Journal of Materials Science: Materials in Electronics. doi:https://doi.org/10.1007/s10854-021-05462-z

  34. Mahmoud ME, Abdelwahab MS (2020) Rapid and efficient removal of lead from water by α-FeOOH/Cellulose/TiO2 nanocomposite. Mater Sci Eng, B 262:114689. https://doi.org/10.1016/j.mseb.2020.114689

    Article  CAS  Google Scholar 

  35. Ladan M, Basirun WJ, Kazi SN (2021) Polyaniline/graphene oxide/Zn-doped TiO2 nanocomposite coatings for the corrosion protection of carbon steel. J Adhesion Sci Tech. https://doi.org/10.1080/01694243.2021.1892414

    Article  Google Scholar 

  36. Shubha A, Manohara SR, Gerward L (2017) Influence of polyvinylpyrrolidone on optical, electrical, and dielectric properties of poly (2-ethyl-2-oxazoline)-polyvinylpyrrolidone blends. J Mol Liq 247:328–336

    CAS  Google Scholar 

  37. Patterson AL (1939) The scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  38. Zidan H (2003) Structural properties of CrF3-and MnCl2-filled poly (vinyl alcohol) films. J Appl Polym Sci 88(5):1115–1120

    CAS  Google Scholar 

  39. Cullity B (1978) Element of X-ray Diffraction, Addison-Wesley Reading. MA Google Sch.

  40. Rahaman MHA, Khandaker MU, Khan ZR, Kufian MZ, Noor ISM, Arof AK (2014) Effect of gamma irradiation on poly (vinyledene difluoride)–lithium bis (oxalato) borate electrolyte. Phys Chem Chem Phys 16(23):11527–11537

    PubMed  Google Scholar 

  41. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part I J Opt Soc Am 38(5):448–457. https://doi.org/10.1364/JOSA.38.000448

    Article  CAS  Google Scholar 

  42. Rajesh K, Crasta V, Kumar NR, Shetty G, Rekha P (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26(4):99

    Google Scholar 

  43. Aziz SB (2016) Modifying poly (vinyl alcohol)(PVA) from insulator to small-bandgap polymer: A novel approach for organic solar cells and optoelectronic devices. J Electron Mater 45(1):736–745

    CAS  Google Scholar 

  44. El-Diasty F, Abdel-Baki M, Abdel-Wahab F (2016) Oxyfluoro aluminum-borate host glass: interband gap study and estimation of radiative lifetime for luminescent dopant ions. Opt Quant Electron 48(4):273

    Google Scholar 

  45. Abdel-Baki M, El-Diasty F, Wahab FAA. (2006) Optical characterization of xTiO2–(60− x) SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity. Optics communications. 261(1):65–70

  46. Chen S, Yao K, Tay FEH, Liow CL (2007) Ferroelectric poly (vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate. J Appl Phys 102(10):104108

    Google Scholar 

  47. Abd-El-Messieh S, Naguib H (2005) Electrical conductivity and dielectric behavior of some poly (alkyl methacrylate) s/polyvinylpyrrolidone blends. Polym-Plast Technol Eng 44(8–9):1591–1606

    CAS  Google Scholar 

  48. Saad A, Hassan A, Youssif M, Ahmed M (1997) Studies of electrical properties of some fire-retarding poly (vinyl chloride) compositions. J Appl Polym Sci 65(1):27–35

    CAS  Google Scholar 

  49. Roy AS, Gupta S, Seethamraju S, Madras G, Ramamurthy PC (2014) Impedance spectroscopy of novel hybrid composite films of polyvinylbutyral (PVB)/functionalized mesoporous silica. Compos B Eng 58:134–139

    CAS  Google Scholar 

  50. Bora PJ, Vinoy K, Ramamurthy PC, Madras G (2017) Electromagnetic interference shielding efficiency of MnO2 nanorod doped polyaniline film. Mat Res Express. 4(2):025013

    Google Scholar 

Download references

Acknowledgements

S. R. Manohara wish to thank the Vision Group on Science and Technology (VGST), Department of Information Technology, Biotechnology and Science & Technology, Government of Karnataka, for providing financial support under project no. KSTePS/VGST/03/CISEE/2015-2016/GRD-470. One of the authors, Shubha A, is grateful to Siddaganga Institute of Technology, Tumakuru, for providing research assistantship for carrying out current research work. Authors acknowledge helpful assistance of Dr. V. Udaykumar and Dr. H. M. Suresh Kumar of the Departments of Chemistry and Physics at this institute for FTIR and UV-Vis measurements, respectively. FESEM characterization was performed using facilities at CeNSE, Indian Institute of Science, Bengaluru, funded by Ministry of Human Resource Development (MHRD), Ministry of Electronics and Information Technology (MeitY), and Nanomission, Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Manohara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubha, A., Manohara, S.R. & Angadi, B. Influence of TiO2 nanoparticles on structural, optical, dielectric and electrical properties of bio-compatible PEOX–PVP–TiO2 nanocomposites. Polym. Bull. 79, 7117–7135 (2022). https://doi.org/10.1007/s00289-021-03838-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03838-z

Keywords

Navigation