Skip to main content
Log in

The polyethylene glycol xanthate-mediated synthesis of block copolymers via novel MADIX agents containing azo initiator: Effect of PEG chain length on molecular properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel macro-xanthate agents containing azo initiator and polyethylene glycol (PEG) were synthesized to prepare block copolymers via macromolecular design by an interchange of xanthate (MADIX) polymerization. In this system, the multifunctional agents were used as both macromolecular chain transfer agents and free radical sources. Polystyrene–polyethylene glycol–polystyrene (PS-PEG-PS) copolymers were prepared easily with molecular weight (Mn) from 23,000 to 43,000 g/mol by MADIX copolymerization of styrene using PEG-N = N-PEG (Mn, PEG = 600, 1000, 1500, and 3000 g/mol) as the macro-MADIX agents. In this process, the molar mass (Mn) increased over time for a controlled MADIX polymerization process, but the polydispersity varied slightly. The controlled polymerizations showed typical living properties, and polymers having low polydispersity (below Đ < 1.4) were obtained with well-defined macromolecular structures. As a result, the macro-MADIX agents and the azo-initiator macromolecules were performed successful formation of the block copolymers. The obtained block copolymers were characterized by gel permeation chromatography, differential scanning calorimetry, Fourier transform infrared spectroscopy, and hydrogen nuclear magnetic resonance (1H NMR) spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yan M, Lin F-Y, Cochran EW (2017) Dynamics of hyperbranched polymers derived from acrylated epoxidized soybean oil. Polymer 125:117–125

    Article  CAS  Google Scholar 

  2. Liu B, Kazlauciunas A, Guthrie JT, Perrier S (2005) One-Pot Hyperbranched Polymer Synthesis Mediated by Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules 38(6):2131–2136

    Article  CAS  Google Scholar 

  3. Dai B, Song M, Hourston DJ, He X, Liang H, Pan C (2004) Influence of block lengths and symmetries of block copolymers on phase behavior of polymer A/polymer B/block copolymer ternary blends. Polymer 45(3):1019–1026

    Article  CAS  Google Scholar 

  4. Yang L, Luo Y, Liu X, Li B (2009) RAFT miniemulsion polymerization of methyl methacrylate. Polymer 50(18):4334–4342

    Article  CAS  Google Scholar 

  5. West AG, Barner-Kowollik C, Perrier S (2010) Poly(ethylene glycol) as a ‘green solvent’ for the RAFT polymerization of methyl methacrylate. Polymer 51(17):3836–3842

    Article  CAS  Google Scholar 

  6. Sugihara S, Iwata K, Miura S, Ma’Radzi AH, Maeda Y (2013) Synthesis of dual thermoresponsive ABA triblock copolymers by both living cationic vinyl polymerization and RAFT polymerization using a dicarboxylic RAFT agent. Polymer 54(3):1043–1052

    Article  CAS  Google Scholar 

  7. Moad G, Rizzardo E (2020) A 20th anniversary perspective on the life of RAFT (RAFT coming of age). Polym Int 69:658–661

    Article  CAS  Google Scholar 

  8. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38(1):63–235

    Article  CAS  Google Scholar 

  9. Métafiot A, Pruvost S, Gérard J-F, Defoort B, Marić M (2020) Synthesis of isoprene-based triblock copolymers by nitroxide-mediated polymerization. Eur Polym J 134:109798

    Article  Google Scholar 

  10. Neugebauer D (2015) Two decades of molecular brushes by ATRP. Polymer 72:413–421

    Article  CAS  Google Scholar 

  11. Beija M, Marty J-D, Destarac M (2011) RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids. Prog Polym Sci 36(7):845–886

    Article  CAS  Google Scholar 

  12. Messina MS, Messina KMM, Bhattacharya A, Montgomery HR, Maynard HD (2020) Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog Polym Sci 100:101186

    Article  CAS  PubMed  Google Scholar 

  13. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 32(1):93–146

    Article  CAS  Google Scholar 

  14. Evci M, Tevlek A, Aydin HM, Caykara T (2020) Synthesis of temperature and light sensitive mixed polymer brushes via combination of surface-initiated PET–ATRP and interface-mediated RAFT polymerization for cell sheet application. Appl Surf Sci 511:145572

    Article  Google Scholar 

  15. Faghihi F, Hazendonk P (2017) RAFT polymerization, characterization, and post-polymerization modification of a copolymer of vinylbenzyl chloride: Towards thiolate functionalized copolymers. Polymer 128:31–39

    Article  CAS  Google Scholar 

  16. Gurnani P, Perrier S (2020) Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 102:101209

    Article  CAS  Google Scholar 

  17. Ding L, Li Y, Cang H, Li J, Wang C, Song W (2020) Controlled synthesis of azobenzene-containing block copolymers both in the main- and side-chain from SET-LRP polymers via ADMET polymerization. Polymer 190:122229

    Article  Google Scholar 

  18. Moad G, Rizzardo E, Thang SH (2008) Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49(5):1079–1131

    Article  CAS  Google Scholar 

  19. Chen F, Cheng Z, Zhu J, Zhang W, Zhu X (2008) Synthesis of poly(vinyl acetate) with fluorescence via a combination of RAFT/MADIX and “click” chemistry. Eur Polym J 44(6):1789–1795

    Article  CAS  Google Scholar 

  20. Zhang S, Chen K, Liang L, Tan B (2013) Synthesis of oligomer vinyl acetate with different topologies by RAFT/MADIX method and their phase behaviour in supercritical carbon dioxide. Polymer 54(20):5303–5309

    Article  CAS  Google Scholar 

  21. Yeole N, Hundiwale D (2011) Effect of hydrophilic macro-RAFT agent in surfactant-free emulsion polymerization. Colloids Surf A Physicochem Eng Asp 392(1):329–334

    Article  CAS  Google Scholar 

  22. Dommanget C, D’Agosto F, Monteil V (2014) Polymerization of Ethylene through Reversible Addition-Fragmentation Chain Transfer (RAFT). Chem Int Ed 126(26):6801–6804

    Google Scholar 

  23. Barsbay M, Güven O (2018) Nanostructuring of polymers by controlling of ionizing radiation-induced free radical polymerization, copolymerization, grafting and crosslinking by RAFT mechanism. Radiat Phys Chem 169:107816

    Article  Google Scholar 

  24. Barthet C, Wilson J, Cadix A, Destarac M, Chassenieux C, Harrisson S (2018) Influence of sodium dodecyl sulfate on the kinetics and control of RAFT/MADIX polymerization of acrylamide. J POLYM SCI POL CHEM 56(7):760–765

    Article  CAS  Google Scholar 

  25. Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition–fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J POLYM SCI POL CHEM 43(22):5347–5393

    Article  CAS  Google Scholar 

  26. Hakobyan K, Gegenhuber T, McErlean CSP, Müllner M (2019) Visible-Light-Driven MADIX Polymerisation via a Reusable, Low-Cost, and Non-Toxic Bismuth Oxide Photocatalyst. Angew Chem Int Ed 58(6):1828–1832

    Article  CAS  Google Scholar 

  27. Congdon TR, Notman R, Gibson MI (2017) Synthesis of star-branched poly(vinyl alcohol) and ice recrystallization inhibition activity. Eur Polym J 88:320–327

    Article  CAS  Google Scholar 

  28. Bernard J, Favier A, Davis TP, Barner-Kowollik C, Stenzel MH (2006) Synthesis of poly(vinyl alcohol) combs via MADIX/RAFT polymerization. Polymer 47(4):1073–1080

    Article  CAS  Google Scholar 

  29. Uyar Z, Turgut F, Arslan U, Durgun M, Degirmenci M (2019) Synthesis and characterization of well-defined end-chain functional macrophotoinitiators of polystyrene and polyacrylonitrile by RAFT/MADIX polymerization. Eur Polym J 119:102–113

    Article  CAS  Google Scholar 

  30. Roy D, Sumerlin BS (2011) Block copolymerization of vinyl ester monomers via RAFT/MADIX under microwave irradiation. Polymer 52(14):3038–3045

    Article  CAS  Google Scholar 

  31. Tastet D, Save M, Charrier F, Charrier B, Ledeuil J-B, Dupin J-C, Billon L (2011) Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural wood fiber: Grafting of polymer as non leaching preservative. Polymer 52(3):606–616

    Article  CAS  Google Scholar 

  32. Kartal B, Yildiko U, Ozturk S, Ata AC, Cakmak I (2014) Study of Solution Polymerization of Styrene in the Presence of Poly(ethylene glycol)-RAFT Agents Possessing Benzoyl Xanthate Derivatives. J POLYM SCI POL CHEM 51(12):990–998

    CAS  Google Scholar 

  33. Wang Y, Hu L, Yin Q, Du K, Zhang T, Yin Q (2020) Supporting data for the photo-induced deformation behavior for AZO-containing polymers connected by hydrogen bonding. Data Br 28:104849

    Article  Google Scholar 

  34. Zhang CL, Zhang DF, Zhao HY, Lin ZY, Huang HH (2012) A facile protocol for N-Cbz protection of amines in PEG-600. CCL 23(7):789–792

    CAS  Google Scholar 

  35. Ganapathi M, Jayaseelan D, Guhanathan S (2015) Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent – A green approach. Ecotoxicol Environ Saf 121:87–92

    Article  CAS  PubMed  Google Scholar 

  36. Balwe SG, Lim KT, Cho BG, Jeong YT (2017) A pot-economical and green synthesis of novel (benzo[d]imidazo[2,1-b]thiazol-3-yl)-2H-chromen-2-one in ethanol–PEG-600 under catalyst-free conditions. Tetrahedron 73(25):3564–3570

    Article  CAS  Google Scholar 

  37. Czech Z, Butwin A, Herko E, Hefczyc B, Zawadiak J (2008) Novel azo-peresters radical initiators used for the synthesis of acrylic pressure-sensitive adhesives. EXPRESS Polym Lett 2:277–283

    Article  CAS  Google Scholar 

  38. Tasdelen MA, Durmaz YY, Karagoz B, Bicak N, Yagci Y (2008) A new photoiniferter/RAFT agent for ambient temperature rapid and well-controlled radical polymerization. J POLYM SCI POL CHEM 46(10):3387–3395

    Article  CAS  Google Scholar 

  39. Nagamune T, Nagai S, Ueda A (1996) Synthesis of (AB)n-type block copolymers employing surface-active macro-azo initiators. J Appl Polym Sci 62(2):359–365

    Article  CAS  Google Scholar 

  40. Lee EJ, Park HJ, Kim SM, Lee KY (2018) Effect of Azo and Peroxide Initiators on a Kinetic Study of Methyl Methacrylate Free Radical Polymerization by DSC. Macromol Res 26(4):322–331

    Article  CAS  Google Scholar 

  41. Cvetkovska M, Lazarevic M, Koseva S, Baysal B, Hamurcu EE, Uyanik N (1997) Macro-azo-initiators having poly(ethylene glycol) units: Synthesis, characterization, and application to AB block copolymerization. J Appl Polym Sci 65(11):2173–2181

    Article  CAS  Google Scholar 

  42. Nakamura K, Fujimoto K, Kawaguchi H (1999) Dispersion polymerization of methyl methacrylate using macro-azo-initiator. Colloids Surf A Physicochem Eng Asp 153(1):195–201

    Article  CAS  Google Scholar 

  43. Simonova YA, Topchiy MA, Filatova MP, Yevlampieva NP, Slyusarenko MA, Bondarenko GN, Asachenko AF, Nechaev MS, Timofeeva LM (2020) Impact of the RAFT/MADIX agent on protonated diallylammonium monomer cyclopolymerization with efficient chain transfer to monomer. Eur Polym J 122:109363

    Article  CAS  Google Scholar 

  44. Moad G, Rizzardo E, Thang SH (2012) Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 65(8):985–1076

    Article  CAS  Google Scholar 

  45. Yang Y, Qiu S, Xie X, Wang X, Li RKY (2010) A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition. Appl Surf Sci 256(10):3286–3292

    Article  CAS  Google Scholar 

  46. Aerts A, Lewis RW, Zhou Y, Malic N, Moad G, Postma A (2018) Light-Induced RAFT Single Unit Monomer Insertion in Aqueous Solution—Toward Sequence-Controlled Polymers. Macromoleculer 39(19):1800240

    Google Scholar 

  47. Levere ME, Chambon P, Rannard SP, McDonald TO (2017) MADIX polymerization of vinyl acetate using ethyl acetate as a green solvent; near-complete monomer conversion with molecular weight control. J POLYM SCI POL CHEM 55(15):2427–2431

    Article  CAS  Google Scholar 

  48. Destarac M (2011) On the Critical Role of RAFT Agent Design in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Polym Rev 51(2):163–187

    Article  CAS  Google Scholar 

  49. Marcilli RHM, Camilo APR, Petzhold CL, Felisberti MI (2018) Amphiphilic diblock copolymers based on sucrose methacrylate: RAFT polymerization and self-assembly. J Mol Liq 266:628–639

    Article  CAS  Google Scholar 

  50. Kim T, Mays J, Chung I (2018) Porous poly(ε-caprolactone) microspheres via UV photodegradation of block copolymers prepared by RAFT polymerization. Polymer 158:198–203

    Article  CAS  Google Scholar 

  51. Chen Q, Han F, Lin C, Wen X, Zhao P (2018) Synthesis of bioreducible core crosslinked star polymers with N, N′-bis(acryloyl)cystamine crosslinker via aqueous ethanol dispersion RAFT polymerization. Polymer 146:378–385

    Article  CAS  Google Scholar 

  52. Ishigaki Y, Mori H (2018) Synthesis of poly(chloroprene)-based block copolymers by RAFT-mediated emulsion polymerization. Polymer 140:198–207

    Article  CAS  Google Scholar 

  53. Levit M, Zashikhina N, Dobrodumov A, Kashina A, Tarasenko I, Panarin E, Fiorucci S, Korzhikova-Vlakh E, Tennikova T (2018) Synthesis and characterization of well-defined poly(2-deoxy-2-methacrylamido-d-glucose) and its biopotential block copolymers via RAFT and ROP polymerization. Eur Polym J 105:26–37

    Article  CAS  Google Scholar 

  54. Barner-Kowollik C, Buback M, Charleux B, Coote ML, Drache M, Fukuda T, Goto A, Klumperman B, Lowe AB, Mcleary JB, Moad G, Monteiro MJ, Sanderson RD, Tonge MP, Vana P (2006) Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. J Polym Sci Pol Chem 44(20):5809–5831

    Article  CAS  Google Scholar 

  55. Moad G (2019) A Critical Survey of Dithiocarbamate Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. J POLYM SCI POL CHEM 57(3):216–227

    Article  CAS  Google Scholar 

  56. Sandeau A, Mazières S, Destarac M (2012) Well-defined macromolecular architectures through consecutive condensation and reversible-deactivation radical polymerizations. Polymer 53(25):5601–5618

    Article  CAS  Google Scholar 

  57. Mun H, Hwang K, Kim W (2019) Synthesis of emulsion styrene butadiene rubber by reversible addition–fragmentation chain transfer polymerization and its properties. Journal of Appl Polym Sci 136(7):47069

    Article  Google Scholar 

  58. Zhou D, Zhu X, Zhu J, Hu L, Cheng Z (2007) 2-oxo-tetrahydrofuran-3-yl 9H-carbazole-9-carbodithioate mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. J Appl Polym Sci 104(5):2913–2918

    Article  CAS  Google Scholar 

  59. Couture G, Améduri B (2012) Kinetics of RAFT homopolymerisation of vinylbenzyl chloride in the presence of xanthate or trithiocarbonate. Eur Polym J 48(7):1348–1356

    Article  CAS  Google Scholar 

  60. Guan C-M, Luo Z-H, Qiu J-J, Tang P-P (2010) Novel fluorosilicone triblock copolymers prepared by two-step RAFT polymerization: Synthesis, characterization, and surface properties. Eur Polym J 46(7):1582–1593

    Article  CAS  Google Scholar 

  61. Lowe AB, McCormick CL (2007) Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32(3):283–351

    Article  CAS  Google Scholar 

  62. Vora A, Singh K, Webster DC (2009) A new approach to 3-miktoarm star polymers using a combination of reversible addition–fragmentation chain transfer (RAFT) and ring opening polymerization (ROP) via “Click” chemistry. Polymer 50(13):2768–2774

    Article  CAS  Google Scholar 

  63. York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60(9):1018–1036

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit Yildiko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiko, U., Ata, A.C., Cakmak, İ. et al. The polyethylene glycol xanthate-mediated synthesis of block copolymers via novel MADIX agents containing azo initiator: Effect of PEG chain length on molecular properties. Polym. Bull. 79, 6239–6257 (2022). https://doi.org/10.1007/s00289-021-03813-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03813-8

Keywords

Navigation