Skip to main content
Log in

Development of functional chitosan-based superabsorbent hydrogel nanocomposites for adsorptive removal of Basic Red 46 textile dye

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogel nanocomposites comprised of chitosan-grafted-hydrolyzed polyacrylamide as matrix and montmorillonite clay as nanofiller CTS-g-PAAm/MMT were synthesized in aqueous phase by using Triton X-100 surfactant as porogen agent with the aim to apply as adsorbents for the removal of Basic Red 46 (BR46) dye. The as-prepared ampholytic hydrogels, denoted as M/MMTx (x = 0, 2, 5, and 10 wt.% of clay loading), were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The nanohybrid hydrogels exhibited mostly exfoliated structure of the MMT layers and presented morphology that is more porous as compared to the virgin matrix. Also, the thermal stability was marginally affected by clay loading. Study on the swelling behavior showed remarkable water super-absorbing ability, salt-, and pH-sensitivity. The adsorption performances were evaluated by varying clay content, adsorbent dose, pH, initial dye concentration, contact time, and temperature. The results showed that the sorption rates were fast and more than 78% of adsorption capacities were achieved within nearly 30 min using 0.1 g L−1 sorbent dose in 200 mg L−1 of dye solution. The nonlinear kinetics and isotherm adsorption models fitted on the experimental data correlated well with pseudo-second-order kinetics and Langmuir models. Also, the intra-particle diffusion mechanism is not rate-limiting step and the adsorption was suggested to occur mainly via electrostatic interactions and hydrogen bonding. The maximum Langmuir adsorption capacities (qm) of the matrix and the optimized nanocomposite M/MMT2 were found to be 1553 and 1813 mg g−1, respectively. Thermodynamic parameters revealed that sorption process was endothermic and spontaneous. Moreover, effective regeneration was obtained in four adsorption–desorption cycles and about 92% of the adsorbed dye was released from hydrogels. Results obtained from this study suggest that the prepared hydrogel nanocomposites could be promising adsorbents for removing cationic dyes from polluted water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yusuf M, Shabbir M, Mohammad F (2017) Natural colorants: historical, processing and sustainable prospects. Nat Products Bioprospect 7:123

    Article  CAS  Google Scholar 

  2. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275

    Article  Google Scholar 

  3. Karim AB, Mounir B, Hachkar M, Bakasse M, Yaacoubi A (2009) Removal of basic red 46 dye from aqueous solution by adsorption onto moroccan clay. J Hazard Mater 168:304

    Article  CAS  PubMed  Google Scholar 

  4. Agueniou F, Chebli D, Reffas A, Bouguettoucha A, Benguerba Y, Favier L, Amrane A (2018) Impact of TiO2–cation exchange resin composite on the removal of ethyl violet. Arab J Sci Eng 43:2451

    Article  CAS  Google Scholar 

  5. Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:4363

    Article  CAS  Google Scholar 

  6. Karisma D, Febrianto G, Mangindaan D (2018) Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane. IOP Conference Series: Earth and environmental science. Institute of Physics Publishing, p 12012

  7. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods a review. J Environ Chem Eng 6:4676

    Article  CAS  Google Scholar 

  8. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption a review. Adv Colloid Interface Sci 209:172

    Article  CAS  PubMed  Google Scholar 

  9. Shabaan OA, Jahin HS, Mohamed GG (2020) Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arab J Chem 13:4797

    Article  CAS  Google Scholar 

  10. Jency M, Krishnaveni J (2020) Adsorptive removal of dyes onto cost effective biomaterials a review. J Environ Treat Tech 9:218

    Article  Google Scholar 

  11. Abd-Elhamid AI, Emran M, El-Sadek MH, El-Shanshory AA, Soliman HMA, Akl MA, Rashad M (2020) Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Appl Water Sci 10:45

    Article  CAS  Google Scholar 

  12. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZIH, Bhatti HN, Nouren S (2018) Dyes adsorption using clay and modified clay a review. J Mol Liq 256:395

    Article  CAS  Google Scholar 

  13. Maged A, Iqbal J, Kharbish S, Ismael IS, Bhatnagar A (2020) Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: characterization, sorption and mechanistic studies. J Hazard Mater 384:121320

    Article  CAS  PubMed  Google Scholar 

  14. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water a review. Chem Eng Res Des 129:271

    Article  CAS  Google Scholar 

  15. Pan Y, Shi X, Cai P, Guo T, Tong Z, Xiao H (2018) Dye removal from single and binary systems using gel-like bioadsorbent based on functional-modified cellulose. Cellulose 25:2559

    Article  CAS  Google Scholar 

  16. Kausar A, Shahzad R, Iqbal J, Muhammad N, Ibrahim SM, Iqbal M (2020) Development of new organic-inorganic, hybrid bionanocomposite from cellulose and clay for enhanced removal of drimarine yellow HF-3GL dye. Int J Biol Macromol 149:1059

    Article  CAS  PubMed  Google Scholar 

  17. Song Y, Tan J, Wang G, Zhou L (2018) Superior amine-rich gel adsorbent from peach gum polysaccharide for highly efficient removal of anionic dyes. Carbohydr Polym 199:178

    Article  CAS  PubMed  Google Scholar 

  18. Shariatinia Z, Jalali AM (2018) Chitosan-based hydrogels: preparation, properties and applications. Int J Biol Macromol 115:194

    Article  CAS  PubMed  Google Scholar 

  19. Tomadoni B, Salcedo MF, Mansilla AY, Casalongué CA, Alvarez VA (2020) Macroporous alginate-based hydrogels to control soil substrate moisture: effect on lettuce plants under drought stress. Eur Polym J 137:109953

    Article  CAS  Google Scholar 

  20. Shalla AH, Bhat MA, Yaseen Z (2018) Hydrogels for removal of recalcitrant organic dyes: a conceptual overview. J Environ Chem Eng 6:5938

    Article  CAS  Google Scholar 

  21. Farag AM, Sokker HH, Zayed EM, Nour Eldien FA, Abd Alrahman NM (2018) Removal of hazardous pollutants using bifunctional hydrogel obtained from modified starch by grafting copolymerization. Int J Biol Macromol 120:2188

    Article  CAS  PubMed  Google Scholar 

  22. Mittal H, Ray SS, Okamoto M (2016) Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification. Macromol Mater Eng 301:496

    Article  CAS  Google Scholar 

  23. Ferfera-Harrar H, Aouaz N, Dairi N (2016) Environmental sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties. Polym Bull 73:815

    Article  CAS  Google Scholar 

  24. Sharma P, Borah DJ, Das P, Das MR (2016) Cationic and anionic dye removal from aqueous solution using montmorillonite clay: evaluation of adsorption parameters and mechanism. Desalin Water Treat 57:8372

    Article  CAS  Google Scholar 

  25. Amari A, Gannouni H, Khan MI, Almesfer MK, Elkhaleefa AM, Gannouni A (2018) Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Appl Sci 8:2302

    Article  CAS  Google Scholar 

  26. Wang Q, Wang Y, Chen L (2019) A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent. Carbohydr Polym 210:314

    Article  CAS  PubMed  Google Scholar 

  27. Dominguez MA, Etcheverry M, Zanini GP (2019) Evaluation of the adsorption kinetics of brilliant green dye onto a montmorillonite/alginate composite beads by the shrinking core model. Adsorption 25:1387

    Article  CAS  Google Scholar 

  28. Nagarpita MV, Roy P, Shruthi SB, Sailaja RRN (2017) Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes. Int J Biol Macromol 102:1226

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan a review. J Mol Liq 214:175

    Article  CAS  Google Scholar 

  30. Mittal H, Al Alili A, Morajkar PP, Alhassan SM (2021) GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose – a versatile adsorbent for the treatment of dyes contaminated wastewater. Int J Biol Macromol 167:1248

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Wang H, Peng H, Wang Z, Wu J, Liu Z (2018) Dye adsorption from aqueous solution by cellulose/chitosan composite: equilibrium, kinetics, and thermodynamics. Fibers Polym 19:340

    Article  CAS  Google Scholar 

  32. Vaz MG, Pereira AGB, Fajardo AR, Azevedo ACN, Rodrigues FHA (2017) Methylene blue adsorption on chitosan-g-poly(acrylic acid)/rice husk ash superabsorbent composite: kinetics, equilibrium, and thermodynamics. Water Air Soil Pollut 228:1

    Article  CAS  Google Scholar 

  33. Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:39747

    Article  Google Scholar 

  34. Wei Q (2014) Fast-swelling porous starch-g-poly(acrylic acid) superabsorbents. Iran Polym J 23:637

    Article  CAS  Google Scholar 

  35. Benhalima T, Ferfera-Harrar H, Lerari D (2017) Optimization of carboxymethyl cellulose hydrogels beads generated by an anionic surfactant micelle templating for cationic dye uptake: swelling, sorption and reusability studies. Int J Biol Macromol 105:1025

    Article  CAS  PubMed  Google Scholar 

  36. Benhalima T, Ferfera-Harrar H (2019) Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue. Int J Biol Macromol 132:126

    Article  CAS  PubMed  Google Scholar 

  37. Ferfera-Harrar H, Dairi N (2013) Elaboration of cellulose acetate nanobiocomposites using acidified gelatin-montmorillonite as nanofiller: morphology, properties, and biodegradation studies. Polym Compos 34:1515

    Article  CAS  Google Scholar 

  38. Zhang J, Wang L, Wang A (2007) Preparation and properties of chitosan-g-poly(acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization. Ind Eng Chem Res 46:2497

    Article  CAS  Google Scholar 

  39. Liu J, Wang A (2008) Study on superabsorbent composites. XXI. Synthesis, characterization and swelling behaviors of chitosan-g-poly(acrylic acid)/organo-rectorite nanocomposite superabsorbents. J Appl Polym Sci 110:678

    Article  CAS  Google Scholar 

  40. Darder M, Colilla M, Ruiz-Hitzky E (2005) Chitosan-clay nanocomposites: application as electrochemical sensors. Appl Clay Sci 28:199

    Article  CAS  Google Scholar 

  41. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84:76

    Article  CAS  Google Scholar 

  42. Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly(acrylicacid)/attapulgite superabsorbent composites. Carbohyd Polym 68:367

    Article  CAS  Google Scholar 

  43. Hosseinzadeh H, Zoroufi S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull 72:1339

    Article  CAS  Google Scholar 

  44. Liu C, Omer AM, Ouyang XK (2018) Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol 106:823

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322:47

    Article  CAS  Google Scholar 

  46. Wang L, Zhang J, Wang A (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly(acrylic acid)/attapulgite composite. Desalination 266:33

    Article  CAS  Google Scholar 

  47. Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22:486

    Article  CAS  Google Scholar 

  48. Cai T, Yang Z, Li H, Yang H, Li A, Cheng R (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605

    Article  CAS  Google Scholar 

  49. Parlayici Ş (2019) Alginate-coated perlite beads for the efficient removal of methylene blue, malachite green, and methyl violet from aqueous solutions: kinetic, thermodynamic, and equilibrium studies. J Anal Sci Technol 10:4

    Article  Google Scholar 

  50. Tan J, Xie S, Wang G, Yu CW, Zeng T, Cai P, Huang H (2020) Fabrication and optimization of the thermo-sensitive hydrogel carboxymethyl cellulose/poly(n-isopropylacrylamide-co-acrylic acid) for U(VI) removal from aqueous solution. Polymers (Basel) 12:151

    Article  CAS  Google Scholar 

  51. Eltaweil AS, Elgarhy GS, El-Subruiti GM, Omer AM (2020) Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int J Biol Macromol 154:307

    Article  CAS  PubMed  Google Scholar 

  52. Asadi S, Eris S, Azizian S (2018) Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions. ACS Omega 3:15140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34

    Article  CAS  PubMed  Google Scholar 

  54. Duman O, Polat TG, Diker CÖ, Tunç S (2020) Agar/κ-carrageenan composite hydrogel adsorbent for the removal of methylene blue from water. Int J Biol Macromol 160:823

    Article  CAS  PubMed  Google Scholar 

  55. Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption - mechanisms and models review. Crit Rev Environ Sci Technol 37:41

    Article  CAS  Google Scholar 

  56. Moussout H, Ahlafi H, Aazza M, Maghat H (2018) Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int J Mod Sci 4:244

    Article  Google Scholar 

  57. Ho YS (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40:119

    Article  CAS  PubMed  Google Scholar 

  58. Weber W, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Proc Am Soc Eng 89:31

    Article  Google Scholar 

  59. Kausar A, Naeem K, Tariq M, Nazli ZIH, Bhatti HN, Jubeen F, Nazir A, Iqbal M (2019) Preparation and characterization of chitosan/clay composite for direct rose FRN dye removal from aqueous media: comparison of linear and non-linear regression methods. J Mater Res Technol 8:1161

    Article  CAS  Google Scholar 

  60. Zamouche M, Habib A, Saaidia K, Bencheikh Lehocine M (2020) Batch mode for adsorption of crystal violet by cedar cone forest waste. SN Appl Sci 2:1

    Article  Google Scholar 

  61. Bhatti HN, Safa Y, Yakout SM, Shair OH, Iqbal M, Nazir A (2020) Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol 150:861

    Article  CAS  PubMed  Google Scholar 

  62. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221

    Article  CAS  Google Scholar 

  63. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:1100

    Google Scholar 

  64. Yeddou Mezenner N, Hamadi A, Kaddour S, Bensaadi Z, Bensmaili A (2013) Biosorption behavior of basic red 46 and violet 3 by dead pleurotus mutilus from single- and multicomponent systems. J Chem 2013:1

    Article  Google Scholar 

  65. Kaouah F, Boumaza S, Berrama T, Trari M, Bendjama Z (2013) Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of basic red 46. J Clean Prod 54:296

    Article  CAS  Google Scholar 

  66. Konicki W, Pełech I (2019) Removing cationic dye from aqueous solutions using as-grown and modified multi-walled carbon nanotubes. Polish J Environ Stud 28:717

    Article  CAS  Google Scholar 

  67. Elhadj M, Samira A, Mohamed T, Djawad F, Asma A, Djamel N (2020) Removal of basic red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies. Sep Sci Technol 55:867

    Article  CAS  Google Scholar 

  68. El Haddad M, Mamouni R, Saffaj N, Lazar S (2012) Removal of a cationic dye - basic red 12 - from aqueous solution by adsorption onto animal bone meal. J Assoc Arab Univ Basic Appl Sci 12:48

    Google Scholar 

  69. Graba Z, Hamoudi S, Bekka D, Bezzi N, Boukherroub R (2015) Influence of adsorption parameters of basic red dye 46 by the rough and treated Algerian natural phosphates. J Ind Eng Chem 25:229

    Article  CAS  Google Scholar 

  70. El-Kady MF, El-Aassar MR, El Batrawy OA, Ibrahim MS, Hassan HS, Fakhry H (2018) Equilibrium and kinetic behaviors of cationic dye decolorization using poly(AN-co-Py)/ZrO2 novel nanopolymeric composites. Adv Polym Technol 37:740

    Article  CAS  Google Scholar 

  71. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Ferfera-Harrar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferfera-Harrar, H., Benhalima, T. & Sadi, A. Development of functional chitosan-based superabsorbent hydrogel nanocomposites for adsorptive removal of Basic Red 46 textile dye. Polym. Bull. 79, 6141–6172 (2022). https://doi.org/10.1007/s00289-021-03795-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03795-7

Keywords

Navigation