Skip to main content

Advertisement

Log in

Halloysite nanotubes/carbohydrate-based hydrogels for biomedical applications: from drug delivery to tissue engineering

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The incorporation of various nanoparticles (NPs) into hydrogel networks led to a series of new structures that have gained massive attentions in biomedical research from both academic and industrial communities. Over the years, by incorporation of halloysite (Hal) nanotubes into three-dimensional (3D) hydrogel networks with biocompatible carbohydrate polymers as scaffolds, the design and synthesis of hydrogel nanocomposites with defined properties for specific biomedical applications were possible. In this review, Scopus, Science direct, PubMed, ISI web of knowledge, and Springer databases were searched from 2013 to 2020 to highlight appropriate studies in the field of biomedical applications of Hal/carbohydrate-based hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright Clearance Center, 2020)

Fig. 4

Copyright Clearance Center, 2017)

Fig. 5

Copyright Clearance Center, 2018)

Fig. 6

Similar content being viewed by others

References

  1. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Google Scholar 

  2. Jafari H, Hassanpour M, Akbari A, Rezaie J, Gohari G, Reza Mahdavinia G, Jabbari E (2021) Characterization of pH-sensitive chitosan/hydroxypropyl methylcellulose composite nanoparticles for delivery of melatonin in cancer therapy. Mater Lett 282:128818

    CAS  Google Scholar 

  3. Akbari A, Padervand M, Jalilian E, Seidi F (2020) Sodium alginate-halloysite nanotube gel beads as potential delivery system for sunitinib malate anticancer compound. Mater Lett 274:128038

    CAS  Google Scholar 

  4. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35

    CAS  Google Scholar 

  5. Ghawanmeh AA, Ali GA, Algarni H, Sarkar SM, Chong KF (2019) Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res 12(5):973–990

    CAS  Google Scholar 

  6. Alinavaz S, Mahdavinia GR, Jafari H, Hazrati M, Akbari A (2021) Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: ciprofloxacin delivery, release kinetics and antibacterial activity. J Mol Struct 1225:129095

    CAS  Google Scholar 

  7. Akbari A, Jabbari N, Sharifi R, Ahmadi M, Vahhabi A, Seyedzadeh SJ, Nawaz M, Szafert S, Mahmoodi M, Jabbari E, Asghari R, Rezaie J (2020) Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. Life Sci 249:117447

    CAS  PubMed  Google Scholar 

  8. Bahrami Z, Akbari A, Eftekhari-Sis B (2019) Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: swelling, dye removal and mechanical properties. Int J Biol Macromol 129:187–197

    CAS  PubMed  Google Scholar 

  9. Kazeminava F, Arsalani N, Akbari A (2018) POSS nanocrosslinked poly (ethylene glycol) hydrogel as hybrid material support for silver nanocatalyst. Appl Organomet Chem 32(6):e4359

    Google Scholar 

  10. Jonker AM, Löwik DW, van Hest JC (2012) Peptide-and protein-based hydrogels. Chem Mater 24(5):759–773

    CAS  Google Scholar 

  11. Shan AH, Jiang L, Li Z (2018) Biodegradable polyester thermogelling system as emerging materials for therapeutic applications. Macromol Mater Eng 303(5):1700656

    Google Scholar 

  12. Bertolino V, Cavallaro G, Milioto S, Lazzara G (2020) Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr Polym 245:116502

    CAS  PubMed  Google Scholar 

  13. Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11(3–4):47–54

    CAS  Google Scholar 

  14. Arsalani N, Kazeminava F, Akbari A, Hamishehkar H, Jabbari E, Kafil HS (2019) Synthesis of polyhedral oligomeric silsesquioxane nano-crosslinked poly(ethylene glycol)-based hybrid hydrogels for drug delivery and antibacterial activity. Polym Int 68(4):667–674

    CAS  Google Scholar 

  15. Cheng C, Song W, Zhao Q, Zhang H (2020) Halloysite nanotubes in polymer science: purification, characterization, modification and applications. Nanotechnol Rev 9(1):323–344

    Google Scholar 

  16. Ventrapragada LK, Creager SE, Rao AM, Podila R (2019) Carbon nanotubes coated paper as current collectors for secondary Li-ion batteries. Nanotechnol Rev 8(1):18–23

    CAS  Google Scholar 

  17. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    CAS  Google Scholar 

  18. Zakaria MR, Akil HM, Kudus MHA, Ullah F, Javed F, Nosbi N (2019) Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: a review. Compos Part B: Eng 176:107313

    CAS  Google Scholar 

  19. Munir KS, Wen C, Li Y (2019) Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: a review. Adv Biosyst 3(3):1800212

    Google Scholar 

  20. Gohari G, Safai F, Panahirad S, Akbari A, Rasouli F, Dadpour MR, Fotopoulos V (2020) Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in ocimum basilicum L. in a concentration-dependent manner. Chemosphere 249:126171

    CAS  PubMed  Google Scholar 

  21. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112:75–93

    Google Scholar 

  22. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250

    CAS  PubMed  Google Scholar 

  23. Wada K (1987) Minerals formed and mineral formation from volcanic ash by weathering. Chem Geol 60(1–4):17–28

    CAS  Google Scholar 

  24. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals: a review. Clay Miner 40(4):383–426

    CAS  Google Scholar 

  25. Fisher GB, Ryan PC (2006) The smectite-to-disordered kaolinite transition in a tropical soil chronosequence Pacific Coast, Costa Rica. Clays Clay Miner 54(5):571–586

    CAS  Google Scholar 

  26. Hillier S, Ryan P (2002) Identification of halloysite (7 Å) by ethylene glycol solvation: the ‘MacEwan effect.’ Clay Miner 37(3):487–496

    CAS  Google Scholar 

  27. Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8):7216–7226

    CAS  PubMed  Google Scholar 

  28. Yah WO, Xu H, Soejima H, Ma W, Lvov Y, Takahara A (2012) Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc 134(29):12134–12137

    CAS  PubMed  Google Scholar 

  29. Massaro M, Colletti C, Lazzara G, Milioto S, Noto R, Riela S (2017) Halloysite nanotubes as support for metal-based catalysts. J Mater Chem A 5(26):13276–13293

    CAS  Google Scholar 

  30. Lai X, Agarwal M, Lvov YM, Pachpande C, Varahramyan K, Witzmann FA (2013) Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33(11):1316–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lvov YM, DeVilliers MM, Fakhrullin RF (2016) The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv 13(7):977–986

    CAS  PubMed  Google Scholar 

  32. Gl Fakhrullina E, Khakimova F Akhatova, Lazzara G, Parisi F, Fakhrullin R (2019) Selective antimicrobial effects of curcumin@ halloysite nanoformulation: a caenorhabditis elegans study. ACS Appl Mater Interfaces 11(26):23050–23064

    Google Scholar 

  33. Rozhina E, Ishmuhametov I, Batasheva S, Fakhrullin R (2018) The effect of mammalian cell functionalization with polycation and halloysite nanotubes on intercellular interactions. BioNanoScience 8(1):310–312

    Google Scholar 

  34. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11(3):820–826

    CAS  Google Scholar 

  35. Ahmed FR, Shoaib MH, Azhar M, Um SH, Yousuf RI, Hashmi S, Dar A (2015) In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf, B 135:50–55

    CAS  Google Scholar 

  36. Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotube encapsulation for functional biocomposites. Adv Coll Interface Sci 207:189–198

    CAS  Google Scholar 

  37. Zhang X, Guo R, Xu J, Lan Y, Jiao Y, Zhou C, Zhao Y (2015) Poly (L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns. J Biomater Appl 30(5):512–525

    CAS  PubMed  Google Scholar 

  38. Hu T, Gui Z, Gong J, Rong R, Wang X, Tan W, Wang Z, Xu X (2020) INOS-mediated acute stomach injury and recovery in mice after oral exposure to halloysite nanotubes. Environ Pollut 258:113758

    CAS  PubMed  Google Scholar 

  39. Wu Y, Yang Y, Liu H, Yao X, Leng F, Chen Y, Tian W (2017) Long-term antibacterial protected cotton fabric coating by controlled release of chlorhexidine gluconate from halloysite nanotubes. RSC Adv 7(31):18917–18925

    CAS  Google Scholar 

  40. Fakhrullina GI, Akhatova FS, Lvov YM, Fakhrullin RF (2015) Toxicity of halloysite clay nanotubes in vivo: a caenorhabditis elegans study. Environ Sci Nano 2(1):54–59

    CAS  Google Scholar 

  41. Kryuchkova M, Danilushkina A, Lvov Y, Fakhrullin R (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a paramecium caudatum study. Environ Sci Nano 3(2):442–452

    CAS  Google Scholar 

  42. De Villiers MM, Otto DP, Strydom SJ, Lvov YM (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715

    PubMed  Google Scholar 

  43. Zhang Y, Gao R, Liu M, Shi B, Shan A, Cheng B (2015) Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development. Theriogenology 83(5):932–941

    CAS  PubMed  Google Scholar 

  44. Kruchkova M, Danilushkina A, Lvov Y, Fakhrullin R (2016) In vivo toxicity study of nanoclays and graphene oxide with paramecium caudatum. Environ Sci Nano 3:442–452

    Google Scholar 

  45. Sun X, Zhang Y, Shen H, Jia N (2010) Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. Electrochim Acta 56(2):700–705

    CAS  Google Scholar 

  46. Pasbakhsh P, De Silva R, Vahedi V, Churchman GJ (2016) Halloysite nanotubes: prospects and challenges of their use as additives and carriers–a focused review. Clay Miner 51(3):479–487

    CAS  Google Scholar 

  47. De Morais W, Pereira M, Fonseca J (2012) Characterization of gelification of chitosan solutions by dynamic light scattering. Carbohyd Polym 87(4):2376–2380

    Google Scholar 

  48. De Morais W, Silva G, Nunes J, Neto AW, Pereira M, Fonseca J (2016) Interpolyelectrolyte complex formation: from lyophilic to lyophobic colloids. Colloids Surf, A 498:112–120

    Google Scholar 

  49. Stopilha R, de Lima C, Pereira M, Fonseca J (2016) Preparation of PEC’s based on chitosan and NaPMA. Colloids Surf, A 489:27–35

    CAS  Google Scholar 

  50. Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38(10–11):1690–1719

    CAS  Google Scholar 

  51. Tharmavaram M, Pandey G, Rawtani D (2018) Surface modified halloysite nanotubes: a flexible interface for biological, environmental and catalytic applications. Adv Coll Interface Sci 261:82–101

    CAS  Google Scholar 

  52. Aguzzi C, Viseras C, Cerezo P, Salcedo I, Sánchez-Espejo R, Valenzuela C (2013) Release kinetics of 5-aminosalicylic acid from halloysite. Colloids Surf, B 105:75–80

    CAS  Google Scholar 

  53. Cavallaro G, Lazzara G, Milioto S, Parisi F, Evtugyn V, Rozhina E, Fakhrullin R (2018) Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl Mater Interfaces 10(9):8265–8273

    CAS  PubMed  Google Scholar 

  54. Karnik S, Hines K, Mills DK (2015) Nanoenhanced hydrogel system with sustained release capabilities. J Biomed Mater Res, Part A 103(7):2416–2426

    CAS  Google Scholar 

  55. Ganguly S, Das TK, Mondal S, Das N (2016) Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RSC Adv 6(107):105350–105362

    CAS  Google Scholar 

  56. Fan L, Zhang J, Wang A (2013) In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J Mater Chem B 1(45):6261–6270

    CAS  PubMed  Google Scholar 

  57. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    CAS  PubMed  Google Scholar 

  58. Ren J, Han L, Cai H, Wu K, Avérous L, Guo W (2018) Functional biocomposites based on plasticized starch/halloysite nanotubes for drug-release applications. Starch-Stärke 70(11–12):1700358

    Google Scholar 

  59. Kurczewska J, Pecyna P, Ratajczak M, Gajęcka M, Schroeder G (2017) Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm J 25(6):911–920

    PubMed  PubMed Central  Google Scholar 

  60. Shi Y-F, Tian Z, Zhang Y, Shen H-B, Jia N-Q (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett 6(1):608

    PubMed  PubMed Central  Google Scholar 

  61. Luo Y, Mills DK (2019) The effect of halloysite addition on the material properties of chitosan-halloysite hydrogel composites. Gels 5(3):40

    CAS  PubMed Central  Google Scholar 

  62. Sabbagh N, Akbari A, Arsalani N, Eftekhari-Sis B, Hamishekar H (2017) Halloysite-based hybrid bionanocomposite hydrogels as potential drug delivery systems. Appl Clay Sci 148:48–55

    CAS  Google Scholar 

  63. Huang B, Liu M, Zhou C (2017) Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellulose 24(7):2861–2875

    CAS  Google Scholar 

  64. Rao KM, Nagappan S, Seo DJ, Ha C-S (2014) pH sensitive halloysite-sodium hyaluronate/poly(hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery. Appl Clay Sci 97–98:33–42

    Google Scholar 

  65. Liu F, Bai L, Zhang H, Song H, Hu L, Wu Y, Ba X (2017) Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers. ACS Appl Mater Interfaces 9(37):31626–31633

    CAS  PubMed  Google Scholar 

  66. Ren X, Xu Z, Wang L, Meng K, Wang H, Zhao H (2019) Silk fibroin/chitosan/halloysite composite medical dressing with antibacterial and rapid haemostatic properties. Mater Res Express 6(12):125409

    CAS  Google Scholar 

  67. Sharifzadeh G, Wahit MU, Soheilmoghaddam M, Whye WT, Pasbakhsh P (2016) Kappa-carrageenan/halloysite nanocomposite hydrogels as potential drug delivery systems. J Taiwan Inst Chem Eng 67:426–434

    CAS  Google Scholar 

  68. Lisuzzo L, Cavallaro G, Parisi F, Milioto S, Fakhrullin R, Lazzara G (2019) Core/shell gel beads with embedded halloysite nanotubes for controlled drug release. Coatings 9(2):70

    Google Scholar 

  69. Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5(21):10559–10564

    CAS  PubMed  Google Scholar 

  70. Kumar-Krishnan S, Hernandez-Rangel A, Pal U, Ceballos-Sanchez O, Flores-Ruiz F, Prokhorov E, De Fuentes OA, Esparza R, Meyyappan M (2016) Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B 4(15):2553–2560

    CAS  PubMed  Google Scholar 

  71. Kadam AA, Jang J, Lee DS (2017) Supermagnetically tuned halloysite nanotubes functionalized with aminosilane for covalent laccase immobilization. ACS Appl Mater Interfaces 9(18):15492–15501

    CAS  PubMed  Google Scholar 

  72. Kadam AA, Jang J, Jee SC, Sung J-S, Lee DS (2018) Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization. Carbohyd Polym 194:208–216

    CAS  Google Scholar 

  73. Kim M, Jee SC, Sung J-S, Kadam AA (2018) Anti-proliferative applications of laccase immobilized on super-magnetic chitosan-functionalized halloysite nanotubes. Int J Biol Macromol 118:228–237

    PubMed  Google Scholar 

  74. Del Buffa S, Rinaldi E, Carretti E, Ridi F, Bonini M, Baglioni P (2016) Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel. Colloids Surf, B 145:562–566

    Google Scholar 

  75. Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1(15):2078–2089

    CAS  PubMed  Google Scholar 

  76. Cavallaro G, Gianguzza A, Lazzara G, Milioto S, Piazzese D (2013) Alginate gel beads filled with halloysite nanotubes. Appl Clay Sci 72:132–137

    CAS  Google Scholar 

  77. Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. J Appl Polym Sci 132(4):41341. https://doi.org/10.1002/app.41341

    Article  CAS  Google Scholar 

  78. Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF (2016) Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale 8(13):7257–7271

    CAS  PubMed  Google Scholar 

  79. Jabbari N, Nawaz M, Rezaie J (2019) Bystander effects of ionizing radiation: conditioned media from X-ray irradiated MCF-7 cells increases the angiogenic ability of endothelial cells. Cell Commun Signal 17(1):1–12

    Google Scholar 

  80. Abdyazdani N, Nourazarian A, Charoudeh HN, Kazemi M, Feizy N, Akbarzade M, Mehdizadeh A, Rezaie J, Rahbarghazi R (2017) The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci Lett 636:205–212

    CAS  PubMed  Google Scholar 

  81. Khaksar M, Sayyari M, Rezaie J, Pouyafar A, Montazersaheb S, Rahbarghazi R (2018) High glucose condition limited the angiogenic/cardiogenic capacity of murine cardiac progenitor cells in in vitro and in vivo milieu. Cell Biochem Funct 36(7):346–356

    CAS  PubMed  Google Scholar 

  82. Yue Y, Han J, Han G, French AD, Qi Y, Wu Q (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohyd Polym 147:155–164

    CAS  Google Scholar 

  83. Soleymani M, Akbari A, Mahdavinia GR (2019) Magnetic PVA/laponite RD hydrogel nanocomposites for adsorption of model protein BSA. Polym Bull 76(5):2321–2340

    CAS  Google Scholar 

  84. McNickle AG, Provencher MT, Cole BJ (2008) Overview of existing cartilage repair technology. Sports Med Arthrosc Rev 16(4):196–201

    PubMed  Google Scholar 

  85. Zheng Y, Lv H, Wang Y, Lu H, Qing L, Xi T (2008) Performance of novel bioactive hybrid hydrogels in vitro and in vivo used for artificial cartilage. Biomed Mater 4(1):015015

    PubMed  Google Scholar 

  86. Koosha M, Raoufi M, Moravvej H (2019) One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf, B 179:270–279

    CAS  Google Scholar 

  87. Liu M, Dai L, Shi H, Xiong S, Zhou C (2015) In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng, C 49:700–712

    CAS  Google Scholar 

  88. Chiew CSC, Poh PE, Pasbakhsh P, Tey BT, Yeoh HK, Chan ES (2014) Physicochemical characterization of halloysite/alginate bionanocomposite hydrogel. Appl Clay Sci 101:444–454

    CAS  Google Scholar 

  89. Huang B, Liu M, Long Z, Shen Y, Zhou C (2017) Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater Sci Eng, C 70:303–310

    CAS  Google Scholar 

  90. Rao KM, Kumar A, Han SS (2018) Polysaccharide based hydrogels reinforced with halloysite nanotubes via polyelectrolyte complexation. Mater Lett 213:231–235

    Google Scholar 

  91. Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res JCDR 9(9):ZE21

    CAS  PubMed  Google Scholar 

  92. Sood A, Granick MS, Tomaselli NL (2014) Wound dressings and comparative effectiveness data. Adv Wound Care 3(8):511–529

    Google Scholar 

  93. Liu M, Shen Y, Ao P, Dai L, Liu Z, Zhou C (2014) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4(45):23540–23553

    CAS  Google Scholar 

  94. Sandri G, Aguzzi C, Rossi S, Bonferoni MC, Bruni G, Boselli C, Cornaglia AI, Riva F, Viseras C, Caramella C (2017) Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater 57:216–224

    CAS  PubMed  Google Scholar 

  95. Liu M, Zhang Y, Li J, Zhou C (2013) Chitin-natural clay nanotubes hybrid hydrogel. Int J Biol Macromol 58:23–30

    CAS  PubMed  Google Scholar 

  96. Kumar A, Zo SM, Kim JH, Kim S-C, Han SS (2019) Enhanced physical, mechanical, and cytocompatibility behavior of polyelectrolyte complex hydrogels by reinforcing halloysite nanotubes and graphene oxide. Compos Sci Technol 175:35–45

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie, J., Akbari, A., Rahimkhoei, V. et al. Halloysite nanotubes/carbohydrate-based hydrogels for biomedical applications: from drug delivery to tissue engineering. Polym. Bull. 79, 4497–4513 (2022). https://doi.org/10.1007/s00289-021-03784-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03784-w

Keywords

Navigation