Skip to main content
Log in

Experimental routes of cytotoxicity studies of nanocomposites based on the organo-bentonite clay and anhydride containing co- and terpolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We introduce briefly surface modification of clay minerals, synthesis of co- and terpolymers characterization techniques of polymer–clay nanocomposites. Organically modified layered-silicates or nanoclays have become an attractive class of hybrid materials due to their wide usage in a great variety of applications from industry to health. For design, synthesis and characterization of potential biomedical nanocomposites, antitumor-active co- and terpolymers poly(3,4-Dihydro-2H-pyran-alt-maleic anhydride) poly(DHP-alt-MA) and poly(3,4-Dihydro-2H-pyran-co-maleic anhydride-co-vinyl acetate) poly(DHP-co-MA-co-VA) were used to prepare copolymer/organo-clay nanocomposites. The functional copolymers, having a combination of rigid/flexible linkages and an ability of complex-formation with interlayered surface of organo-silicate, and their nanocomposites have been synthesized by interlamellar complex-radical copolymerization of intercalated monomer complexes of maleic anhydride and 3,4-Dihydro-2H-pyran and vinyl acetate with three alkyl ammonium salts (C14–C18) surface-modified bentonite and monomer mixtures. X-ray diffraction method and observation monitored the formation and the changes in the basal space and crystallinity of terpolymer and its nanocomposites. Basal space of nanocomposites shows increment when compared with the terpolymer. Property-structure relations of all synthesized materials were enlightened by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) and HR-Raman spectroscopy. Morphology of nanocomposite was characterized by transmission electron microscopy (TEM). The cytotoxic effects of copolymer, terpolymer and modified bentonite nanocomposites on L929 cells were assessed by MTT cell viability assay, and modified nanocomposites caused decreased cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Scheme 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roy R, Roy RA, Roy DM (1986) Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Mater Lett 4(8–9):323–328

    Article  Google Scholar 

  2. Kaplan Can H, Şahin Ö (2015) Design, synthesis and characterization of 3, 4-dihydro-2H-pyran containing copolymer/clay nanocomposites. J Macromol Sci Part A 52(6):465–475

    Article  CAS  Google Scholar 

  3. Hun Kim M, Choi G, Elzatahry A, Vinu A, Bin Choy Y, Choy J-H (2016) Review of clay-drug hybrid materials for biomedical applications: administration routes. Clays Clay Miner 64(2):115–130

    Article  Google Scholar 

  4. Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4):74

    Article  PubMed Central  Google Scholar 

  5. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  6. Noori S, Kokabi M, Hassan Z (2015) Nanoclay enhanced the mechanical properties of poly (vinyl alcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Proced Mater Sci 11:152–156

    Article  CAS  Google Scholar 

  7. Murugesan S, Scheibel T (2020) Copolymer/clay nanocomposites for biomedical applications. Adv Func Mater 30(17):1908101

    Article  CAS  Google Scholar 

  8. Nguyen QT, Baird DG (2006) Preparation of polymer–clay nanocomposites and their properties. Adv Polym Technol J Polym Process Inst 25(4):270–285

    Article  CAS  Google Scholar 

  9. Kickelbick G (2007) Hybrid materials: synthesis, characterization, and applications. Wiley

    Google Scholar 

  10. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  11. Rawtani D, Agrawal Y (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30(3):282–295

    CAS  Google Scholar 

  12. Wang JH, Young TH, Lin DJ, Sun MK, Cheng LP (2006) Preparation of clay/PMMA nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromol Mater Eng 291(6):661–669

    Article  CAS  Google Scholar 

  13. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, Hoque ME (2016) Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater Sci Eng C 67:792–806

    Article  CAS  Google Scholar 

  14. Zafar R, Zia KM, Tabasum S, Jabeen F, Noreen A, Zuber M (2016) Polysaccharide based bionanocomposites, properties and applications: a review. Int J Biol Macromol 92:1012–1024

    Article  CAS  PubMed  Google Scholar 

  15. Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23(7):1749–1761

    Article  CAS  PubMed  Google Scholar 

  16. Mkhabela V, Ray SS (2015) Biodegradation and bioresorption of poly (ɛ-caprolactone) nanocomposite scaffolds. Int J Biol Macromol 79:186–192

    Article  CAS  PubMed  Google Scholar 

  17. Okamoto M, Morita S, Kim Y, Kotaka T, Tateyama H (2001) Dispersed structure change of smectic clay/poly (methyl methacrylate) nanocomposites by copolymerization with polar comonomers. Polymer 42(3):1201–1206

    Article  CAS  Google Scholar 

  18. Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6(12):2216–2219

    Article  CAS  Google Scholar 

  19. Giannelis EP (1998) Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organomet Chem 12(10–11):675–680

    Article  CAS  Google Scholar 

  20. Soares V, Nascimento R, Menezes V, Batista L (2004) TG characterization of organically modified montmorillonite. J Therm Anal Calorim 75(2):671–676

    Article  CAS  Google Scholar 

  21. Can HK, Doğan AL, Rzaev ZM, Uner AH, Güner A (2005) Synthesis and antitumor activity of poly (3, 4-dihydro-2H-pyran-co-maleic anhydride-co-vinyl acetate). J Appl Polym Sci 96(6):2352–2359

    Article  CAS  Google Scholar 

  22. Karakus G, Can HK, SahinYaglioglu A (2020) Synthesis, structural characterization, thermal behavior and cytotoxic/antiproliferative activity assessments of poly (maleic anhydride-alt-acrylic acid)/hydroxyurea polymer/drug conjugate. J Mol Struct 1210:127989

    Article  CAS  Google Scholar 

  23. Butler GB (1982) Synthesis and antitumor activity of “pyran copolymer.” J Macromol Sci Part C Polym Rev 22(1):89–130

    Article  Google Scholar 

  24. Abbas YA, Abdelaal MY (1996) Synthesis and characterization of polydi (3, 4-dihydro-2H-pyran-2-methyl) adipate hydrogel. Polym Bull 36(3):273–278

    Article  CAS  Google Scholar 

  25. Can HK (2016) Charge transfer complex formation in in-situ maleic anhydride and N-vinyl caprolactam copolymer and copolymer/organo-montmorillonite nanoarchitectures. J Macromol Sci Part A 53(1):26–33

    Article  CAS  Google Scholar 

  26. Pique TM, Perez CJ, Alvarez VA, Vázquez A (2014) Water soluble nanocomposite films based on poly (vinyl alcohol) and chemically modified montmorillonites. J Compos Mater 48(5):545–553

    Article  CAS  Google Scholar 

  27. Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  28. Carboni D, Lasio B, Alzari V, Mariani A, Loche D, Casula MF, Malfatti L, Innocenzi P (2014) Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films. Phys Chem Chem Phys 16(47):25809–25818

    Article  CAS  PubMed  Google Scholar 

  29. Wesełucha-Birczyńska A, Świętek M, Sołtysiak E, Galiński P, Piekara K, Błażewicz M (2015) Raman spectroscopy and the material study of nanocomposite membranes from poly (ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst 140(7):2311–2320

    Article  PubMed  Google Scholar 

  30. Bokobza L (2018) Spectroscopic techniques for the characterization of polymer nanocomposites: a review. Polymers 10(1):7

    Article  Google Scholar 

  31. Tan H, Wang L, Wen X, Deng L, Mijowska E, Tang T (2020) Insight into the influence of polymer topological structure on the exfoliation of clay in polystyrene matrix via annealing process. Appl Clay Sci 194:105708

    Article  CAS  Google Scholar 

  32. Morgan DM (ed) (1998) Tetrazolium (MTT) assay for cellular viability and activity. In: Polyamine Protocols. Methods in Molecular Biology™, vol 79, pp 179–184

  33. Bartocci A, Papademetriou V, Chirigos M (1980) Enhanced macrophage and natural killer cell antitumor activity by various molecular weight maleic anhydride divinyl ethers. J Immunopharmacol 2(1):149–157

    Article  CAS  PubMed  Google Scholar 

  34. Kamada H, Tsutsumi Y, Yamamoto Y, Kihira T, Kaneda Y, Mu Y, Kodaira H, Tsunoda S-i, Nakagawa S, Mayumi T (2000) Antitumor activity of tumor necrosis factor-α conjugated with polyvinylpyrrolidone on solid tumors in mice. Cancer Res 60(22):6416–6420

    CAS  PubMed  Google Scholar 

  35. Amirnejat S, Nosrati A, Peymanfar R, Javanshir S (2020) Synthesis and antibacterial study of 2-amino-4H-pyrans and pyrans annulated heterocycles catalyzed by sulfated polysaccharide-coated BaFe12O19 nanoparticles. Res Chem Intermed 46:3683

    Article  CAS  Google Scholar 

  36. Reddy TN, Ravinder M, Bikshapathi R, Sujitha P, Kumar CG, Rao VJ (2017) Design, synthesis, and biological evaluation of 4-H pyran derivatives as antimicrobial and anticancer agents. Med Chem Res 26(11):2832–2844

    Article  CAS  Google Scholar 

  37. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromol 11(3):820–826

    Article  CAS  Google Scholar 

  38. Tarasova E, Naumenko E, Rozhina E, Akhatova F, Fakhrullin R (2019) Cytocompatibility and uptake of polycations-modified halloysite clay nanotubes. Appl Clay Sci 169:21–30

    Article  CAS  Google Scholar 

  39. Sandri G, Bonferoni MC, Ferrari F, Rossi S, Aguzzi C, Mori M, Grisoli P, Cerezo P, Tenci M, Viseras C (2014) Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohyd Polym 102:970–977

    Article  CAS  Google Scholar 

  40. Mihaila SM, Gaharwar AK, Reis RL, Khademhosseini A, Marques AP, Gomes ME (2014) The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 35(33):9087–9099

    Article  CAS  PubMed  Google Scholar 

  41. Mousa M, Evans ND, Oreffo RO, Dawson JI (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159:204–214

    Article  CAS  PubMed  Google Scholar 

  42. Cheikh D, García-Villén F, Majdoub H, Zayani MB, Viseras C (2019) Complex of chitosan pectin and clay as diclofenac carrier. Appl Clay Sci 172:155–164

    Article  CAS  Google Scholar 

  43. García-Villén F, Carazo E, Borrego-Sánchez A, Sánchez-Espejo R, Cerezo P, Viseras C, Aguzzi C (2019) Clay minerals in drug delivery systems. Modified clay and zeolite nanocomposite materials. Elsevier, Philadelphia, pp 129–166

    Chapter  Google Scholar 

  44. Sponchioni M, Palmiero UC, Moscatelli D (2019) Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater Sci Eng C 102:589–605

    Article  CAS  Google Scholar 

  45. Puiggalí-Jou A, Del Valle LJ, Alemán C (2019) Drug delivery systems based on intrinsically conducting polymers. J Control Release 309:244–264

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Kaplan Can.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, H.K., Sevim, H., Şahin, Ö. et al. Experimental routes of cytotoxicity studies of nanocomposites based on the organo-bentonite clay and anhydride containing co- and terpolymers. Polym. Bull. 79, 5549–5567 (2022). https://doi.org/10.1007/s00289-021-03776-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03776-w

Keywords

Navigation