Skip to main content
Log in

Effect of cross-linking on electrochemical performances of polyaniline as the cathode material of lithium-ion batteries

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Developing advanced organic cathodes with significant charge–discharge performances would prove a potential alternative for traditionally inorganic cathode materials of lithium-ion batteries in the future. Herein, a conductive polymer as electrode with improved electrochemical performances was reported. Polyaniline (PANI) with fibrous morphology was firstly polymerized by using perchloric acid (HClO4) as the large molecular doped acid. Furthermore, the cross-linking PANI was prepared with using triphenylamine as the cross-linkers and p-phenylenediamine as the molecular chain extender. Applied as the cathode of lithium-ion batteries, the cross-linking PANI fibers with moderate cross-linking degree exhibited an improved electrochemical and cell performances, in which it presented a highest discharge specific capacity of 138.5 mAh·g−1 and a relatively stable capacity retention of around 126.3 mAh·g−1 after 150 cycles. Also, the cross-linking PANI exhibited the improved rate capabilities, and it could still provide a discharge specific capacity of 92.5 mAh·g−1 even at a higher current density of 500 mA.g−1, which is obviously higher than that of pure PANI. The work presented herein demonstrated that the cross-linking for conductive polymers was a potential way to obtain the improved electrochemical performances for the polymer-based electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li YG, Gong M, Liang YY, Feng J, Dai HJ (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4:1805

    Article  PubMed  Google Scholar 

  2. Li WY, Cha JJ, Zheng GY, Yang Y, McDowell MT, Cui Y (2013) Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 4:1331

    Article  PubMed  Google Scholar 

  3. Zhang QF, Uchaker E, Candelaria SL, Cao GZ (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  CAS  PubMed  Google Scholar 

  4. Roberts ME, Wheeler DR, McKenzie BB, Bruce CB (2009) High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J Mater Chem 19:6977–6979

    Article  CAS  Google Scholar 

  5. Ruzicka JY, Bakar FA, Thomsen L, Cowie BC, McNicoll C, Kemmitt T, Brand HEA, Ingham B, Andersson GG, Golovko VB (2014) XPS and NEXAFS study of fluorine modified TiO2 nano-ovoids reveals dependence of Ti3+ surface population on the modifying agent. RSC Adv 4:20649–20658

    Article  CAS  Google Scholar 

  6. Liu XH, Lai WH, Chou SL (2020) The application of hollow micro-/nanostructured cathodes for sodium-ion batteries. Mater Chem Front 4:1289–1303

    Article  CAS  Google Scholar 

  7. Chen D, Tan HT, Rui XH, Zhang Q, Feng YZ, Geng HB, Li CC, Huang SM, Yu Y (2019) Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat 1:251–259

    Google Scholar 

  8. Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118:11433–11456

    Article  CAS  PubMed  Google Scholar 

  9. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  CAS  Google Scholar 

  10. Xie J, Gu PY, Zhang QC (2017) Nanostructured conjugated polymers: nanostructured conjugated polymers: toward high performance organic electrodes for rechargeable batteries. ACS Energy Lett 2:1985–1996

    Article  CAS  Google Scholar 

  11. Yuan LX, Wang Z, Zhang W, Hu X, Chen J, Huang Y, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284

    Article  CAS  Google Scholar 

  12. Wang HG, Zhang XB (2018) Organic carbonyl compounds for sodium-ion batteries: recent progress and future perspectives. Chem Eur J 24:18235–18245

    Article  CAS  PubMed  Google Scholar 

  13. Xie J, Wang ZL, Xu ZJ, Zhang QC (2018) Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv Energy Mater 21:1–6

    Google Scholar 

  14. Lee J, Moon J, Han SA, Kim J, Malgras V, Heo YU, Kim H, Lee SM, Liu HK, Dou SX, Yamauchi Y, Park MS, Kim JH (2019) Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano 13:9607–9619

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131:12086–12087

    Article  CAS  PubMed  Google Scholar 

  16. Gordana IM (2013) Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synth Met 170:31–56

    Article  Google Scholar 

  17. Song LF, Jiang CH, Jiao CL, Zhang J, Sun LX, Xu F, You WS, Wang ZG, Zhao JJ (2010) Two new metal-organic frameworks with mixed ligands of carboxylate and bipyridine: synthesis, crystal structure, and sensing for methanol. Cryst Growth Des 10:5020–5023

    Article  CAS  Google Scholar 

  18. Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: From non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4:2003–2019

    Article  CAS  Google Scholar 

  19. Liang Y, Tao Z, Chen J (2012) Organic electrodes: organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2:742–769

    Article  CAS  Google Scholar 

  20. Kovalenko I, Bucknall DG, Yushin C (2010) Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv Funct Mater 20:3979–3986

    Article  CAS  Google Scholar 

  21. Malka D, Giladi S, Hanna O, Weitman M, Cohen R, Elias Y, Attias R, Frimer BT, D, Aurbach (2019) Catechol-modified carbon cloth as hybrid electrode for energy storage devices. J Electron Mater 166:A1147–A1153

    CAS  Google Scholar 

  22. Jiménez P, Levillain E, Alévêque O, Guyomard D, Lestriez B, Gaubicher J (2017) Lithium n-doped polyaniline as a high-performance electroactive material for rechargeable batteries. Angew Chem 129:1–5

    Article  Google Scholar 

  23. Tao W, Zhang H, Jia T, Luo S, Hou Q, Wang Y, Shi G, Xu B (2018) Two phenanthrenequinone-based compound cathode materials for lithium ion batteries. J Electron Mater 165:A1574–A1577

    CAS  Google Scholar 

  24. Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 19:7091–7106

    Article  Google Scholar 

  25. Hansen KA, Nerkar J, Thomas K, Bottle SE, Mullane APO, Talbot PC, Blinco JP (2018) New spin on organic radical batteries-an isoindoline nitroxide-Based High-voltage cathode material. ASC Appl Mater Interfaces 9:7982–7988

    Article  Google Scholar 

  26. Wang X, Zhang C, Xu Y, He Q, Mu P, Chen Y, Zeng J, Wang F, Jiang JX (2018) Conjugated microporous polytetra(2-thienyl)ethylene as high performance anode material for lithium- and sodium-ion batteries. Macromol Chem Phys 7:1700524

    Article  Google Scholar 

  27. Su C, He HH, Xu LH, Zhao K, Zheng CC, Zhang C (2017) Mesoporous conjugated polymer based on high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as cathode material for Li-ion batteries. J Mater Chem A 5:2701–2709

    Article  CAS  Google Scholar 

  28. Li P, Zhang X, Guo J, Shi G, Sang X, Ni C, Xu Y (2018) Fabrication of polyaniline/octa-(aminopropylsilsesquioxane) with enhanced electrochemical capacitance and improved cycling stability via in situ polymerization. Polym Bull 8:3395–3406

    Article  CAS  Google Scholar 

  29. Bouarissa A, Gueddim A, Bouarissa N, Djellali S (2018) Band structure and optical properties of polyaniline polymer material. Polym Bull 7:3023–3033

    Article  Google Scholar 

  30. Pardo MA, Valle MD, Díaz FR (2015) Synthesis and characterization of aniline and thiophene and/or alkylthiophenes polymers. Polym Bull 9:2189–2199

    Article  Google Scholar 

  31. Wu YW, Zeng RH, Nan JM, Shu D, Qiu YC, Chou SL (2017) Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv Energy Mater 7:1700278

    Article  Google Scholar 

  32. Zhu LM, Ding GC, Xie LL, Cao XY, Liu JP, Lei XF, Ma JX (2019) Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem Mater 31:8582–8612

    Article  CAS  Google Scholar 

  33. Häupler B, Wild A, Schubert US (2015) Carbonyls: Powerful organic materials for secondary batteries. Adv Energy Mater 5:1402034

    Article  Google Scholar 

  34. Wang X, Deng JX, Duan XJ, Liu D, Guo JS, P, Liu (2014) Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J Mater Chem A 31:12323–12329

    Article  Google Scholar 

  35. MacDiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290

    Article  CAS  Google Scholar 

  36. Ryu KS, Kim KM (2008) A hybrid power source with a shared electrode of polyaniline doped with LiPF6. J Power Sources 165:420–426

    Article  Google Scholar 

  37. Ahmoud M, Maher FEK, Deepak D, Tran TT, Dusan L (2020) Self-assembly and cross-linking of conducting polymers into 3D hydrogel electrodes for supercapacitor applications. ASC Appl Energy Mater 1:923–932

    Google Scholar 

  38. Prigodin VN, Efetov KB (1993) Localization transition in a random network of metallic wires: a model for highly conducting polymers. Phys Rev Lett 19:2932–2935

    Article  Google Scholar 

  39. Christoph W (2005) Synthesis, processing and properties of conjugated polymer networks. Chem Comm 43:5378–5389

    Google Scholar 

  40. Wang TS, Sun HJ, Peng TJ, Liu B, Hou Y, Lei B (2020) Preparation and characterization of polyaniline/p-phenylenediamine grafted graphene oxide composites for supercapacitors. J Mol Struct 1221:128835

    Article  CAS  Google Scholar 

  41. Li Y, Bober P, Trchova M, Stejskal J (2017) Colloidal dispersions of conducting copolymers of aniline and p-phenylenediamine for films with enhanced conductometric sensitivity to temperature. J Mater Chem C 7:1668–1674

    Article  Google Scholar 

  42. Massi M, Albonetti C, Facchini M, Cavallini M, Biscarini F (2006) Toward amorphous conductors: enhanced conductivity of doped polyaniline via interchain crosslinking promoted by acid-functionalized aluminum quinolines. Adv Mater 20:2739–2742

    Article  Google Scholar 

  43. Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 4:380–384

    Article  Google Scholar 

  44. Niu HJ, Luo PH, Zhang ML, Zhang L, Hao LN, Luo J, Bai XD, Wang W (2009) Multifunctional, photochromic, acidichromic, electrochromic molecular switch: novel aromatic poly(azomehine)s containing triphenylamine Group. Eur Polym J 45:3058–3071

    Article  CAS  Google Scholar 

  45. Liu P, Zhang P, Cao DL, Gan LH, Li YF (2013) New side groups-tuned triphenylamine-based chromophores: synthesis, morphology, photophysical properties and electronic structures. J Mol Struct 1050:151–158

    Article  CAS  Google Scholar 

  46. Jiménez P, Levillain E, Alévêque O, Guyomard D, Lestriez B, Gaubicher J (2017) Lithium n-doped polyaniline as a high-performance electroactive material for rechargeable batteries. Angew Chem Int Ed 56:1–5

    Article  Google Scholar 

  47. Ryu KS, Kim KM, Kang SG, Lee GJ, Joo J, Chang SH (2000) The charge/discharge mechanism of polyaniline films doped with LiBF4 as a polymer electrode in a Li secondary battery. Solid State Ionics 135:229–234

    Article  CAS  Google Scholar 

  48. Ryu KS, Kim KM, Kang SG, Lee GJ, Joo J, Chang SH (2000) Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synth Met 110:213–217

    Article  CAS  Google Scholar 

  49. Lin T, Chen IW, Liu FX, Yang CY, Bi H, Xu FF, Huang FQ (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 6267:1508–1513

    Article  Google Scholar 

  50. Rajagopal R, Ryu KS (2018) Facile hydrothermal synthesis of lanthanum oxide/hydroxide nanoparticles anchored reduced grapheme oxide for supercapacitor applications. J Ind Eng Chem 60:441–450

    Article  CAS  Google Scholar 

  51. Xu YS, Wang SP, Peng HL, Yang ZG, Martin DJ, Bund A, Nanjundan AK, Yamauchi Y (2019) Electrochemical characteristics of the cobaltosic oxide in organic electrolyte according to bode plots: double-layer capacitance and pseudocapacitance. ChemElectroChem 6:2456–2463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Science Foundation of China (Grant No.51573099), the Natural Science Foundation of Liaoning Province, China (Grant No.2020-MS-232), Liaoning BaiQianWan Talents Program ([2020]78 (2020921096)) and Scientific research project of Liaoning Provincial Department of Education (LJ2020004 and LJ2020005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Xin, H. & Su, C. Effect of cross-linking on electrochemical performances of polyaniline as the cathode material of lithium-ion batteries. Polym. Bull. 79, 5261–5278 (2022). https://doi.org/10.1007/s00289-021-03747-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03747-1

Keywords

Navigation