Skip to main content
Log in

Construction of rare-earth element doping rGO/PSMA-PTP/rGO nanosheets for enhancement of anti-corrosion performance

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polythiophene (PTP) was functionalized on rGO nanosheets by in situ polymerization process, and SMA was decorated on another rGO by simple ultrasonic method. Then, chemical bonding between anhydride of PSMA and amidogen of PTP fabricated the novel rGO/PSMA-PTP/rGO (GSPG) composite. The rare earth ions (Re3+ = La3+, Ce3+ and Pr3+) were doped into the GSPG composite by physical mixing to prepare the aimed Re-GSPG composite. The structure of the composite was analyzed using a combination of infrared spectroscopy, UV–visible spectroscopy, X-ray diffraction, thermos gravimetric analysis, X-ray photoelectron spectroscopy and scanning electron morphology. The corrosion protection of the functional composite was investigated by electrochemical tests. A significant long-term corrosion protection of GSPG and Re-GSPG composite coating on carbon steel was observed. GSPG and Re-GSPG composites presented the homogeneous dispersion of the polymer coatings and the enhanced interfacial compatibility between the nanosheets and resin matrix, which formed longer corrosion diffusion pathways on organic coating to improve anti-corrosion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghosh K, Rahaman H, Bhattacharyya P (2020) Prediction and implementation of graphene and other two-dimensional material based superconductors: a review. IEEE Trans Appl Supercond 30:2. https://doi.org/10.1109/Tasc.2019.2954617

    Article  Google Scholar 

  2. Abdullah MF, Hashim AM (2019) Review and assessment of photovoltaic performance of graphene/Si heterojunction solar cells. J Mater Sci 54(2):911–948. https://doi.org/10.1007/s10853-018-2947-3

    Article  CAS  Google Scholar 

  3. Agudosi ES, Abdullah EC, Numan A, Mubarak NM, Khalid M, Omar N (2019) A review of the graphene synthesis routes and its applications in electrochemical energy storage. Crit Rev Solid State. https://doi.org/10.1080/10408436.2019.1632793

    Article  Google Scholar 

  4. Govindaraj P, Fox B, Aitchison P, Hameed N (2019) A review on graphene polymer nanocomposites in harsh operating conditions. Ind Eng Chem Res 58(37):17106–17129. https://doi.org/10.1021/acs.iecr.9b01183

    Article  CAS  Google Scholar 

  5. Ding J-H, Zhao H-R, Zheng Y, Zhao X, Yu H-B (2018) A long-term anticorrsive coating through graphene passivation. Carbon 138:197–206. https://doi.org/10.1016/j.carbon.2018.06.018

    Article  CAS  Google Scholar 

  6. Ding Y, Zhong J, Xie P, Rong JC, Zhu HF, Zheng WB, Wang JL, Gao F, Shen L, He HF, Cheng ZQ (2019) Protection of mild steel by waterborne epoxy coatings incorporation of polypyrrole nanowires/graphene nanocomposites. Polymers-Basel. https://doi.org/10.3390/polym11121998

    Article  PubMed  PubMed Central  Google Scholar 

  7. Taheri NN, Ramezanzadeh B, Mahdavian M (2019) Application of layer-by-layer assembled graphene oxide nanosheets/polyaniline/zinc cations for construction of an effective epoxy coating anti-corrosion system. J Alloy Compd 800:532–549. https://doi.org/10.1016/j.jallcom.2019.06.103

    Article  CAS  Google Scholar 

  8. Wang F, Mao J (2019) Nacre-like graphene oxide/waterborne styrene butadiene rubber composite and its reusable anti-corrosion behavior on Al-2024. Prog Org Coat 132:191–200. https://doi.org/10.1016/j.porgcoat.2019.03.048

    Article  CAS  Google Scholar 

  9. Dermani AK, Kowsari E, Ramezanzadeh B, Amini R (2019) Utilizing imidazole based ionic liquid as an environmentally friendly process for enhancement of the epoxy coating/graphene oxide composite corrosion resistance. J Ind Eng Chem 79:353–363. https://doi.org/10.1016/j.jiec.2019.07.010

    Article  CAS  Google Scholar 

  10. Dai LX, Zhang W, Sun L, Wang XH, Jiang W, Zhu ZW, Zhang HB, Yang CC, Tang J (2019) Highly stretchable and compressible self-healing P(AA-co-AAm)/CoCl2 hydrogel electrolyte for flexible supercapacitors. ChemElectroChem 6(2):467–472. https://doi.org/10.1002/celc.201801281

    Article  CAS  Google Scholar 

  11. Dalmoro V, Cedron S, Azambuja DS, Castagno KRL (2019) Polypyrrole film doped with corrosion-inhibitors electropolymerized on AA 1100. Mater Res-Ibero-Am J. https://doi.org/10.1590/1980-5373-mr-2018-0919

    Article  Google Scholar 

  12. Divakaran N, Zhang X, Kale MB, Senthil T, Mubarak S, Dhamodharan D, Wu LX, Wang JL (2020) Fabrication of surface modified graphene oxide/unsaturated polyester nanocomposites via in-situ polymerization: Comprehensive property enhancement. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144164

    Article  Google Scholar 

  13. Abd El-Lateef HM, Sayed AR, Adam MSS (2019) Sulfonated salicylidene thiadiazole complexes with Co (II) and Ni (II) ions as sustainable corrosion inhibitors and catalysts for cross coupling reaction. Appl Organomet Chem 33(8):e4987. https://doi.org/10.1002/aoc.4987

    Article  CAS  Google Scholar 

  14. Abdallah M, Alfakeer M, Alonazi AM, Al-Juaid SS (2019) Ketamine drug as an inhibitor for the corrosion of 316 stainless steel in 2M HCl solution. Int J Electrochem Sc 14(11):10227–10247. https://doi.org/10.20964/2019.11.10

    Article  CAS  Google Scholar 

  15. Abdulsada SA, Fazakas E, Torok TI (2019) Corrosion testing on steel reinforced XD3 concrete samples prepared with a green inhibitor and two different superplasticizers. Mater Corros 70(7):1262–1272. https://doi.org/10.1002/maco.201810695

    Article  CAS  Google Scholar 

  16. Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M (2018) Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel Check. Corros Sci 137:111–126. https://doi.org/10.1016/j.corsci.2018.03.038

    Article  CAS  Google Scholar 

  17. Wu Y, Jiang F, Qiang Y, Zhao W (2021) Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings. Carbon 176:39–51. https://doi.org/10.1016/j.carbon.2021.01.135

    Article  CAS  Google Scholar 

  18. Ilie M, Dragoman D, Baibarac M (2019) Photoconductive behavior of the PPV/RGO composites: insights of charge transfer process. Phys Status Solidi B 256(7):1800392. https://doi.org/10.1002/pssb.201800392

    Article  CAS  Google Scholar 

  19. Cogal S, Ela SE, Ali AK, Cogal GC, Micusik M, Omastova M, Oksuz AU (2018) Polyfuran-based multi-walled carbon nanotubes and graphene nanocomposites as counter electrodes for dye-sensitized solar cells. Res Chem Intermediat 44(5):3325–3335. https://doi.org/10.1007/s11164-018-3309-0

    Article  CAS  Google Scholar 

  20. Fan X, Hu Y, Zhang Y, Lu J, Chen X, Niu J, Li N, Chen D (2019) Reduced graphene oxide-epoxy grafted poly(styrene-Co-Acrylate) composites for corrosion protection of mild steel. Coatings. https://doi.org/10.3390/coatings9100666

    Article  Google Scholar 

  21. Hu Y, Fan X, Chen X, Niu J, Li N, Wang X, Chen D (2020) Reduced graphene oxide suspension with a comb copolymer and its effects on the corrosion resistance of hydroxyl polyacrylate coatings. J Appl Polym Sci. https://doi.org/10.1002/app.48898

    Article  Google Scholar 

  22. Wu Y, Jiang F, Qiang Y, Zhao W (2021) Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings. Carbon. https://doi.org/10.1016/j.carbon.2021.01.135

    Article  Google Scholar 

  23. Qian Y, Zheng W, Chen W, Feng T, Liu TX, Fu YQ (2021) Enhanced functional properties of CeO2 modified graphene/epoxy nanocomposite coating through interface engineering. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2020.126819

    Article  Google Scholar 

  24. Alam R, Mobin M, Aslam J (2016) Polypyrrole/graphene nanosheets/rare earth ions/dodecyl benzene sulfonic acid nanocomposite as a highly effective anticorrosive coating. Surf Coat Technol 307:382–391. https://doi.org/10.1016/j.surfcoat.2016.09.010

    Article  CAS  Google Scholar 

  25. Mohammadi A, Barikani M, Doctorsafaei AH, Isfahani AP, Shams E, Ghalei B (2018) Aqueous dispersion of polyurethane nanocomposites based on calix[4] arenes modified graphene oxide nanosheets: preparation, characterization, and anti-corrosion properties. Chem Eng J 349:466–480. https://doi.org/10.1016/j.cej.2018.05.111

    Article  CAS  Google Scholar 

  26. Zou L, Wang S-s, Qiu J (2020) Preparation and properties of a glucose biosensor based on an ionic liquid-functionalized graphene/carbon nanotube composite. New Carbon Mater 35(1):12–19. https://doi.org/10.1016/s1872-5805(20)60472-3

    Article  Google Scholar 

  27. Wu Y, Zhao W, Qiang Y, Chen Z, Wang L, Gao X, Fang Z (2020) π-π interaction between fluorinated reduced graphene oxide and acridizinium ionic liquid: synthesis and anti-corrosion application. Carbon 159:292–302. https://doi.org/10.1016/j.carbon.2019.12.047

    Article  CAS  Google Scholar 

  28. Yang FJ, Huang YF, Zhang MQ, Ruan WH (2018) Significant improvement of ionic conductivity of high-graphene oxide-loading ice-templated poly (ionic liquid) nanocomposite electrolytes. Polymer 153:438–444. https://doi.org/10.1016/j.polymer.2018.08.039

    Article  CAS  Google Scholar 

  29. Khalili Dermani A, Kowsari E, Ramezanzadeh B, Amini R (2019) Utilizing imidazole based ionic liquid as an environmentally friendly process for enhancement of the epoxy coating/graphene oxide composite corrosion resistance. J Ind Eng Chem 79:353–363. https://doi.org/10.1016/j.jiec.2019.07.010

    Article  CAS  Google Scholar 

  30. Jia S, Li J, Sui G, Du L, Zhang Y, Zhuang Y, Li B (2019) Synthesis of 3D flower-like structured Gd/TiO2@rGO nanocomposites via a hydrothermal method with enhanced visible-light photocatalytic activity. Rsc Adv 9(53):31177–31185. https://doi.org/10.1039/c9ra06045f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He C, Sun S, Peng H, Tsui CP, Shi D, Xie X, Yang Y (2016) Poly(ionic liquid)-assisted reduction of graphene oxide to achieve high-performance composite electrodes. Compos B Eng 106:81–87. https://doi.org/10.1016/j.compositesb.2016.09.022

    Article  CAS  Google Scholar 

  32. Gan C, Liang T, Li W, Fan X, Zhu M (2019) Amine-terminated ionic liquid modified graphene oxide/copper nanocomposite toward efficient lubrication. Appl Surf Sci 491:105–115. https://doi.org/10.1016/j.apsusc.2019.06.141

    Article  CAS  Google Scholar 

  33. Wang W, Wang H, Zhao J, Wang X, Xiong C, Song L, Ding R, Han P, Li W (2019) Self-healing performance and corrosion resistance of graphene oxide–mesoporous silicon layer–nanosphere structure coating under marine alternating hydrostatic pressure. Chem Eng J 361:792–804. https://doi.org/10.1016/j.cej.2018.12.124

    Article  CAS  Google Scholar 

  34. Zhu XH, Kang XJ (2020) Effect of graphene oxide (GO) on the hydration and dissolution of alite in a synthetic cement system. J Mater Sci 55(8):3419–3433. https://doi.org/10.1007/s10853-019-04266-1

    Article  CAS  Google Scholar 

  35. Hikku GS, Jeyasubramanian K, Venugopal A, Ghosh R (2017) Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloy Compd 716:259–269. https://doi.org/10.1016/j.jallcom.2017.04.324

    Article  CAS  Google Scholar 

  36. Ye Y, Yang D, Zhang D, Chen H, Zhao H, Li X, Wang L (2020) POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coating. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123160

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao W, Tang Y, Xi J, Kong J (2015) Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes. Appl Surf Sci 326:276–284. https://doi.org/10.1016/j.apsusc.2014.11.069

    Article  CAS  Google Scholar 

  38. He S, Ma Y, Zhou J, Zeng J, Liu X, Huang Z, Chen X, Chen X (2019) A direct “touch” approach for gold nanoflowers decoration on graphene/ionic liquid composite modified electrode with good properties for sensing bisphenol A. Talanta 191:400–408. https://doi.org/10.1016/j.talanta.2018.08.093

    Article  CAS  PubMed  Google Scholar 

  39. Gopalsamy K, Yang Q, Cai S, Huang T, Gao Z, Gao C (2019) Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors. J Energy Chem 34:104–110. https://doi.org/10.1016/j.jechem.2018.10.007

    Article  Google Scholar 

  40. Lu Y, Hu J, Zeng Y, Zhu Y, Wang H, Lei X, Huang S, Guo L, Li L (2020) Electrochemical determination of rutin based on molecularly imprinted poly (ionic liquid) with ionic liquid-graphene as a sensitive element. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2020.127911

    Article  Google Scholar 

  41. Vazirinasab E, Jafari R, Momen G (2018) Application of superhydrophobic coatings as a corrosion barrier: a review. Surf Coat Technol 341:40–56. https://doi.org/10.1016/j.surfcoat.2017.11.053

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianyu Chen.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhan, W., Ding, X. et al. Construction of rare-earth element doping rGO/PSMA-PTP/rGO nanosheets for enhancement of anti-corrosion performance. Polym. Bull. 79, 5165–5181 (2022). https://doi.org/10.1007/s00289-021-03746-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03746-2

Keywords

Navigation