Skip to main content

Advertisement

Log in

New glyco-copolymers containing α-D-glucofuranose and α-D-mannofuranose groups synthesized by free-radical polymerization of sugar-based monomers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Carbohydrates are safe materials with the potential of application in various areas, hence, in recent years, a growing interest has been attracted to the synthesis of the new systems containing carbohydrates. By considering this and based on the carbohydrate's merits, in this work, the new two different random glyco-copolymers were prepared through the polymerization of the α-D-glucofuranose- and α-D-mannofuranose-based monomers. A facile free-radical polymerization technique was utilized for glyco-copolymers synthesis in the presence of benzoyl peroxide (BPO) as an initiator. Fourier transform infrared (FT-IR) technique was used for investigating the achievements in the synthesis of copolymers. In the proton nuclear magnetic resonance (1H NMR) spectroscopy analysis, the absence of any peaks in the rigon related to vinylic protons confirmed the successful synthesizing of glyco-copolymers. As well as, enhancing the intensity of the peaks in the 0.60–2.39 ppm which is related to the formed aliphatic protons as a result of vinylic glycomonomers copolymerization is the strong witness for success in copolymerization. In this way and by considering the special structure of the prepared glyco-copolymers and based on the review of the published literature, it is expected that the prepared new glyco-copolymers be a good candidate for biomedicinal applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pană A-M, Gherman V, Sfîrloagă P, Bandur G, Ştefan L-M, Popa M, Rusnac L-M (2012) Thermal stability and biodegradation of novel D-mannose based glycopolymers. Polym Test 31(3):384–392. https://doi.org/10.1016/j.polymertesting.2012.01.001

    Article  CAS  Google Scholar 

  2. Namazi H (2017) Polymers in our daily life. BioImpacts: BI 7 (2):73

  3. Tabrizi AG, Arsalani N, Mohammadi A, Ghadimi LS, Ahadzadeh I, Namazi H (2018) A new route for the synthesis of polyaniline nanoarrays on graphene oxide for high-performance supercapacitors. Electrochim Acta 265:379–390

    Article  CAS  Google Scholar 

  4. Hu Z, Fan X, Zhang G (2010) Synthesis and characterization of glucose-grafted biodegradable amphiphilic glycopolymers P(AGE-glucose)-b-PLA. Carbohyd Polym 79(1):119–124. https://doi.org/10.1016/j.carbpol.2009.07.041

    Article  CAS  Google Scholar 

  5. Petrova KT, Dey SS, Barros MT (2015) Formation of spherical and core–shell polymeric microparticles from glycopolymers. Carbohyd Polym 125:281–287. https://doi.org/10.1016/j.carbpol.2015.02.052

    Article  CAS  Google Scholar 

  6. Namazi H, Jafarirad S (2011) Application of hybrid organic/inorganic dendritic ABA type triblock copolymers as new nanocarriers in drug delivery systems. Int J Polym Mater 60(9):603–619

    Article  CAS  Google Scholar 

  7. Pooresmaeil M, Namazi H (2020) Fabrication of a smart and biocompatible brush copolymer decorated on magnetic graphene oxide hybrid nanostructure for drug delivery application. European Polymer Journal:110126

  8. Pooresmaeil M, Namazi H, Salehi R (2020) Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohyd Polym 246:116658

    Article  CAS  Google Scholar 

  9. Namazi H, Hamrahloo YT (2011) Novel PH sensitive nanocarrier agents based on citric acid dendrimers containing conjugated β-cyclodextrins. Adv Pharmaceut Bullet 1(1):40

    Google Scholar 

  10. Namvari M, Namazi H (2014) Sweet graphene I: toward hydrophilic graphene nanosheets via click grafting alkyne-saccharides onto azide-functionalized graphene oxide. Carbohyd Res 396:1–8

    Article  CAS  Google Scholar 

  11. Kiessling LL, Grim JC (2013) Glycopolymer probes of signal transduction. Chem Soc Rev 42(10):4476–4491

    Article  CAS  Google Scholar 

  12. Pal P, Pandey JP, Sen G (2018) Sesbania gum based hydrogel as platform for sustained drug delivery: an ‘in vitro’study of 5-Fu release. Int J Biol Macromol 113:1116–1124

    Article  CAS  Google Scholar 

  13. Nia SB, Pooresmaeil M, Namazi H (2020) Carboxymethylcellulose/layered double hydroxides bio-nanocomposite hydrogel: a controlled amoxicillin nanocarrier for colonic bacterial infections treatment. Int J Biol Macromol 155:1401–1409

    Article  Google Scholar 

  14. Sánchez-Chaves M, Ruiz C, Cerrada ML, Fernández-García M (2008) Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene–vinyl alcohol copolymers. Polymer 49(12):2801–2807. https://doi.org/10.1016/j.polymer.2008.04.047

    Article  CAS  Google Scholar 

  15. Pooresmaeil M, Namazi H (2019) Preparation and characterization of polyvinyl alcohol/β-cyclodextrin/GO-Ag nanocomposite with improved antibacterial and strength properties. Polym Adv Technol 30(2):447–456. https://doi.org/10.1002/pat.4484

    Article  CAS  Google Scholar 

  16. Toomari Y, Namazi H, Entezami AA (2015) Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent. Int J Biol Macromol 79:883–893. https://doi.org/10.1016/j.ijbiomac.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  17. Xu LQ, Huang C, Wang R, Neoh K-G, Kang E-T, Fu GD (2011) Synthesis and characterization of fluorescent perylene bisimide-containing glycopolymers for Escherichia coli conjugation and cell imaging. Polymer 52(25):5764–5771. https://doi.org/10.1016/j.polymer.2011.10.019

    Article  CAS  Google Scholar 

  18. Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H (2018) Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int J Biol Macromol 119:588–596. https://doi.org/10.1016/j.ijbiomac.2018.07.181

    Article  CAS  PubMed  Google Scholar 

  19. Namazi H, Belali S (2016) Starch-g-lactic acid/montmorillonite nanocomposite: synthesis, characterization and controlled drug release study. Starch-Stärke 68(3–4):177–187

    Article  CAS  Google Scholar 

  20. Pooresmaeil M, Namazi H (2018) β-Cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: synthesis and characterization. Mater Chem Phys 218:62–69. https://doi.org/10.1016/j.matchemphys.2018.07.022

    Article  CAS  Google Scholar 

  21. Pal P, Banerjee A, Halder U, Pandey JP, Sen G, Bandopadhyay R (2018) Conferring antibacterial properties on sesbania gum via microwave-assisted graft copolymerization of DADMAC. J Polym Environ 26(8):3272–3282

    Article  CAS  Google Scholar 

  22. Safa KD, Babazadeh M, Namazi H, Mahkam M, Asadi MG (2004) Synthesis and characterization of new polymer systems containing very bulky tris (trimethylsilyl) methyl substituents as side chains. Eur Polymer J 40(3):459–466

    Article  CAS  Google Scholar 

  23. Namazi H, Heydari A, Pourfarzolla A (2014) Synthesis of glycoconjugated polymer based on polystyrene and nanoporous β-cyclodextrin to remove copper (II) from water pollution. Int J Polym Mater Polym Biomater 63(1):1–6

    Article  CAS  Google Scholar 

  24. NAMAZI H, BAHRAMI SA, Entezami AA (2005) Synthesis and controlled release of biocompatible prodrugs of beta-cyclodextrin linked with PEG containing ibuprofen or indomethacin

  25. Toomari Y, Namazi H (2016) Synthesis of supramolecular biodendrimeric β-CD-(spacer-β-CD)21 via click reaction and evaluation of its application as anticancer drug delivery agent. Int J Polym Mater Polym Biomater 65(10):487–496. https://doi.org/10.1080/00914037.2015.1129960

    Article  CAS  Google Scholar 

  26. Ladmiral V, Melia E, Haddleton DM (2004) Synthetic glycopolymers: an overview. Eur Polymer J 40(3):431–449. https://doi.org/10.1016/j.eurpolymj.2003.10.019

    Article  CAS  Google Scholar 

  27. Wang Q, Dordick JS, Linhardt RJ (2002) Synthesis and Application of Carbohydrate-Containing Polymers. Chem Mater 14(8):3232–3244. https://doi.org/10.1021/cm0200137

    Article  CAS  Google Scholar 

  28. Zhang Y, Chan JW, Moretti A, Uhrich KE (2015) Designing polymers with sugar-based advantages for bioactive delivery applications. J Control Release 219:355–368. https://doi.org/10.1016/j.jconrel.2015.09.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma Z, Zhu XX (2019) Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. Journal of Materials Chemistry B 7(9):1361–1378. https://doi.org/10.1039/C8TB03162B

    Article  CAS  PubMed  Google Scholar 

  30. Slavin S, Burns J, Haddleton DM, Becer CR (2011) Synthesis of glycopolymers via click reactions. Eur Polymer J 47(4):435–446. https://doi.org/10.1016/j.eurpolymj.2010.09.019

    Article  CAS  Google Scholar 

  31. Adharis A, Vesper D, Koning N, Loos K (2018) Synthesis of (meth)acrylamide-based glycomonomers using renewable resources and their polymerization in aqueous systems. Green Chem 20(2):476–484. https://doi.org/10.1039/C7GC03023A

    Article  CAS  Google Scholar 

  32. Adharis A, Loos K (2019) Green Synthesis of Glycopolymers Using an Enzymatic Approach. Macromol Chem Phys 220(20):1900219. https://doi.org/10.1002/macp.201900219

    Article  CAS  Google Scholar 

  33. Adharis A, Loos K (2019) Chapter Eight - Synthesis of glycomonomers via biocatalytic methods. In: Bruns N, Loos K (eds) Methods in Enzymology, vol 627. Academic Press, pp 215–247. doi:https://doi.org/10.1016/bs.mie.2019.04.015

  34. Pooresmaeil M, Namazi H (2018) Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: Preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf, B 172:17–25. https://doi.org/10.1016/j.colsurfb.2018.08.017

    Article  CAS  Google Scholar 

  35. Weaver LG, Singh Y, Burn PL, Blanchfield JT (2016) The synthesis and ring-opening metathesis polymerization of glycomonomers. RSC Adv 6(37):31256–31264. https://doi.org/10.1039/C5RA25732H

    Article  CAS  Google Scholar 

  36. Pal P, Rangra N, Samanta S, Aryan A, Pandey JP, Sen G (2019) Graft copolymer of PVP—A sutureless, haemostatic bioadhesive for wound healing application. Polymer Bulletin:1–22

  37. Namazi H, Sharifzadeh R (2005) Regioselective synthesis of vinylic derivatives of common monosccarides through their activated stannylene acetal intermediates. Molecules 10(7):772–782

    Article  CAS  Google Scholar 

  38. Kursun TT, Cimen D, Caykara T (2017) Glycopolymer brushes with specific protein recognition property. J Appl Polym Sci 134(36):45238. https://doi.org/10.1002/app.45238

    Article  CAS  Google Scholar 

  39. Ting SRS, Chen G, Stenzel MH (2010) Synthesis of glycopolymers and their multivalent recognitions with lectins. Polym Chem 1(9):1392–1412. https://doi.org/10.1039/C0PY00141D

    Article  CAS  Google Scholar 

  40. Liu F, Wu Y, Bai L, Peng X, Zhang H, Zhang Y, An P, Wang S, Ma G, Ba X (2018) Facile preparation of hyperbranched glycopolymers via an AB3* inimer promoted by a hydroxy/cerium(iv) redox process. Polym Chem 9(40):5024–5031. https://doi.org/10.1039/C8PY01134F

    Article  CAS  Google Scholar 

  41. Xue H, Peng L, Dong Y, Zheng Y, Luan Y, Hu X, Chen G, Chen H (2017) Synthesis of star-glycopolymers by Cu(0)-mediated radical polymerisation in the absence and presence of oxygen. RSC Adv 7(14):8484–8490. https://doi.org/10.1039/C6RA28763H

    Article  CAS  Google Scholar 

  42. Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z (2015) Biodegradable glycopolymer-b-poly(ε-caprolactone) block copolymer micelles: versatile construction, tailored lactose functionality, and hepatoma-targeted drug delivery. Journal of Materials Chemistry B 3(11):2308–2317. https://doi.org/10.1039/C4TB01962H

    Article  CAS  PubMed  Google Scholar 

  43. Muñoz-Bonilla A, Heuts JPA, Fernández-García M (2011) Glycoparticles and bioactive films prepared by emulsion polymerization using a well-defined block glycopolymer stabilizer. Soft Matter 7(6):2493–2499. https://doi.org/10.1039/C0SM01330G

    Article  Google Scholar 

  44. Dai X-H, Wang Z-M, Huang Y-f, Pan J-M, Yan Y-s, Liu D-M, Sun L (2014) Biomimetic star-shaped poly(ε-caprolactone)-b-glycopolymer block copolymers with porphyrin-core for targeted photodynamic therapy. RSC Adv 4(80):42486–42493. https://doi.org/10.1039/C4RA07402E

    Article  CAS  Google Scholar 

  45. Adharis A, Ketelaar T, Komarudin AG, Loos K (2019) Synthesis and Self-Assembly of Double-Hydrophilic and Amphiphilic Block Glycopolymers. Biomacromol 20(3):1325–1333. https://doi.org/10.1021/acs.biomac.8b01713

    Article  CAS  Google Scholar 

  46. Pană A-M, Gherman V, Sfȋrloagă P, Rusu G, Bandur G, Popa M, Rusnac L-M, Dumitrel G-A (2019) Biodegradation studies on new glycopolymers derived from oligomeric d-mannose itaconates and 2-hydroxypropyl acrylate. Polym Degrad Stab 167:210–216. https://doi.org/10.1016/j.polymdegradstab.2019.07.008

    Article  CAS  Google Scholar 

  47. Namazi H, Mosadegh M (2011) Bio-nanocomposites based on naturally occurring common polysaccharides chitosan, cellulose and starch with their biomedical applications. Recent developments in bio-nanocomposites for biomedical applications:379–397

  48. Quan J, Liu Z, Branford-White C, Nie H, Zhu L (2014) Fabrication of glycopolymer/MWCNTs composite nanofibers and its enzyme immobilization applications. Colloids Surf, B 121:417–424. https://doi.org/10.1016/j.colsurfb.2014.06.030

    Article  CAS  Google Scholar 

  49. Zheng Y, Zhang Y, Zhang T, Cai H, Xie X, Yang Y, Quan J, Wu H (2020) AuNSs@Glycopolymer-ConA hybrid nanoplatform for photothermal therapy of hepatoma cells. Chem Eng J 389:124460. https://doi.org/10.1016/j.cej.2020.124460

    Article  CAS  Google Scholar 

  50. Cerrada ML, Sánchez-Chaves M, Ruiz C, Fernández-García M (2008) Glycopolymers resultant from ethylene–vinyl alcohol copolymers: Degradation and rheological behavior in bulk. Eur Polymer J 44(7):2194–2201. https://doi.org/10.1016/j.eurpolymj.2008.04.020

    Article  CAS  Google Scholar 

  51. Namazi H, Bahrami S, Entezami AA (2005) Synthesis and controlled release of biocompatible prodrugs of β-cyclodextrin linked with PEG containing ibuprofen or indomethacin. Iranian Polymer Journal (English Edition) 14:921–927

    CAS  Google Scholar 

  52. Nasiri Oskooie M, Pooresmaeil M, Namazi H (2019) Design and synthesis of vinylic glycomonomers and glycopolymer based on α-D-glucofuranose moieties. J Polym Res 26(12):268. https://doi.org/10.1007/s10965-019-1969-0

    Article  CAS  Google Scholar 

  53. Pal P, Pandey JP, Sen G (2018) Grafted sesbania gum: A novel derivative for sugarcane juice clarification. Int J Biol Macromol 114:349–356

    Article  CAS  Google Scholar 

  54. Rani P, Pal P, Panday JP, Mishra S, Sen G (2019) Alginic acid derivatives: synthesis, characterization and application in wastewater treatment. J Polym Environ 27(12):2769–2783

    Article  CAS  Google Scholar 

  55. Pal P, Banerjee A, Soren K, Chakraborty P, Pandey JP, Sen G, Bandopadhyay R (2019) Novel biocide based on cationic derivative of Psyllium: surface modification and antibacterial activity. J Polym Environ 27(6):1178–1190

    Article  CAS  Google Scholar 

  56. Wei Z, Huang L, Cui L, Zhu X (2020) Mannose: Good player and assister in pharmacotherapy. Biomed Pharmacother 129:110420

    Article  CAS  Google Scholar 

  57. Hoeg-Jensen T (2020) Glucose-sensitive insulin. Molecular Metabolism:101107

  58. Namazi H, Salimi F (2011) SYNTHESIS AND POLYMERIZATION OF VINYL SACCHARIDES. Iranian Polymer Journal (English Edition) 20(1127):77–86

    CAS  Google Scholar 

  59. Ahmed M, Lai BF, Kizhakkedathu JN, Narain R (2012) Hyperbranched glycopolymers for blood biocompatibility. Bioconjug Chem 23(5):1050–1058

    Article  CAS  Google Scholar 

  60. Liu M, Wang K, Zhang X, Zhang X, Li Z, Zhang Q, Huang Z, Wei Y (2015) Fabrication of stable and biocompatible red fluorescent glycopolymer nanoparticles for cellular imaging. Tetrahedron 71(34):5452–5457

    Article  CAS  Google Scholar 

  61. Pană A-M, Ordodi V, Rusu G, Gherman V, Bandur G, Rusnac L-M, Dumitrel G-A (2020) Biodegradation Pattern of Glycopolymer Based on D-Mannose Oligomer and Hydroxypropyl Acrylate. Polymers 12(3):704

    Article  Google Scholar 

  62. Pană A-M, Ştefan L-M, Bandur G, Sfîrloagă P, Gherman V, Silion M, Popa M, Rusnac L-M (2013) Novel Glycopolymers Based on D-Mannose and Methacrylates: Synthesis, Thermal Stability and Biodegradability Testing. J Polym Environ 21(4):981–994

    Article  Google Scholar 

  63. Pana A-M, Rusnac L-M, Bandur G, Sisu E, Badea V, Silion M (2010) Synthesis and characterization of new glycopolymers based on monosaccharides and maleic anhydride. MATERIALE PLASTICE 47(1):28

    CAS  Google Scholar 

  64. Zhuang J, Li M, Pu Y, Ragauskas AJ, Yoo CG (2020) Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl Sci 10(12):4345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the University of Tabriz and Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science for the financial supports for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namazi, H., Pooresmaeil, M. & Oskooie, M.N. New glyco-copolymers containing α-D-glucofuranose and α-D-mannofuranose groups synthesized by free-radical polymerization of sugar-based monomers. Polym. Bull. 79, 4891–4903 (2022). https://doi.org/10.1007/s00289-021-03731-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03731-9

Keywords

Navigation