Skip to main content

Advertisement

Log in

Synthesis and characterization of N-(2-acetyl benzofuran-3-yl) methacryl amide and ethyl methacrylate copolymer/graphite oxide composites and study of their kinetic and electrical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Copolymers of N-(2-acetylbenzofuran-3-yl) methacrylamide (BFMAA) and ethyl methacrylate (EMA) were prepared by radical copolymerization. The composition of copolymers was estimated by 1H-NMR spectroscopy. The composites of P(BFMAA39-co-EMA) [COP1] and P(BFMAA15-co-EMA) [COP2] loaded 18 wt% graphite oxide (GO) were prepared utilizing Ultrasonic Homogenizer Sonicator Processor. The FT-IR, DSC, TGA and SEM techniques were used in the characterization of the copolymers and composites. The thermal degradation behavior of COP1 was investigated by FT-IR studies of the partially degraded copolymer. And, this copolymer was able to form a four-member amide ring and imidization via intramolecular while being heated above 340 °C. Dynamic TG analysis under argon gas was used to investigate the thermal decomposition processes of pure COP1 and COP1/GO. Two degradation models including the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods were used to determine the apparent activation energy of the copolymer and its composite for approximately 65% of thermal decomposition occurred between 200 and 400 °C. The results also showed that average activation energy between 111.69 and 134.25 kJ/mol was obtained. The estimated activation energy values make it possible to build a simpler approach to expose the thermal decomposition behavior of copolymer and its composite. Dielectric and electrical behaviors of the copolymer composites having a semiconductor behavior filled with graphite oxide (GO) were investigated. The activation energy values of P(BFMAA15%-co-EMA)[COP2]/GO 18 wt% and COP1/GO 18wt% from dc conductivities were 0.182 eV and 0.245 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Poul S (1996) Surface coatings science and technology. Wiley, London

    Google Scholar 

  2. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045. https://doi.org/10.1016/j.polymer.2006.01.029

    Article  CAS  Google Scholar 

  3. Zheng W, Wong S-C, Sue H-J (2002) Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 43(25):6767–6773. https://doi.org/10.1016/S0032-3861(02)00599-2

    Article  CAS  Google Scholar 

  4. Lu W, Lin H, Wu D, Chen G (2006) Unsaturated pester resin/graphite nanosheet conducting composites with a low percolation threshold. Polymer 47(12):4440–4444. https://doi.org/10.1016/j.Polymer.2006.03.107

    Article  CAS  Google Scholar 

  5. El-Tantawy F, Kamada K, Ohnabe H (2002) In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater Lett 56(1):112–126. https://doi.org/10.1016/S0167-577X(02)00401-9

    Article  CAS  Google Scholar 

  6. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205. https://doi.org/10.1021/ma060733p

    Article  CAS  Google Scholar 

  7. Anderson DA, Freeman ES (1961) The kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci 54(159):253–260. https://doi.org/10.1002/pol.1961.1205415920

    Article  CAS  Google Scholar 

  8. Nam J-d, Seferis JC (1991) A composite methodology for multistage degradation of polymers. J Polym Sci Part B Polym Phys 29(5):601–608. https://doi.org/10.1002/polb.1991.090290509

    Article  CAS  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  10. Connor MT, Roy S, Ezquerra TA, Baltá Calleja FJ (1998) Broadband ac conductivity of conductor-polymer composites. Phys Rev B 57(4):2286–2294. https://doi.org/10.1103/physRevB.57.2286

    Article  CAS  Google Scholar 

  11. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes−polyepoxy composites. Macromolecules 36(14):5187–5194. https://doi.org/10.1021/ma021263b

    Article  CAS  Google Scholar 

  12. Brom HB, Reedijk JA, Martens HCF, Adriaanse LJ, de Jongh LJ, Michels MAJ, Michels MAJ (1998) Frequency and temperature scaling in the conductivity and its structural consequences. Phys Status Solid 205(1):103–109. https://doi.org/10.1002/(SICI)1521-3951(199801)205:1%3c103::AIDPSSB103%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  13. Bhattacharyya S, Saha SK, Mandal TK, Mandal BM, Chakravorty D, Goswami K (2001) Multiple hopping conduction in interpenetrating polymer network composites of polypyrrole and poly(styrene-co-butyl acrylate). J Appl Phys 89(10):5547–5551. https://doi.org/10.1063/1.1356435

    Article  CAS  Google Scholar 

  14. Barım E (2015) Benzofuran İçeren Polimerlerin Sentezi ve Karakterizasyonu, PhD Thesis. Harran Üniversity, Şanlıurfa, Turkey

    Google Scholar 

  15. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  16. Coşkun MF, Erol İ, Demirelli K, Coşkun M (2002) A study of copolymerization with 4-bromobenzyl methacrylate and ethyl methacrylate. J Macromol Sci Part A 39(9):889–900. https://doi.org/10.1081/MA-120013569

    Article  CAS  Google Scholar 

  17. Yao S-H, Yuan J-K, Dang Z-M, Bai J (2010) High dielectric performance of three-component nanocomposites induced by a synergetic effect. Mater Lett 64(24):2682–2684. https://doi.org/10.1016/j.matlet.2010.09.001

    Article  CAS  Google Scholar 

  18. Biryan F, Abubakar AM, Demirelli K (2018) Product analysis, electrical and dielectric properties depending on thermal influence of p(N-isopropyl acrylamide)/graphite-filled composite. Thermochım Acta 669:66–79. https://doi.org/10.1016/j.tca.2018.09.009

    Article  CAS  Google Scholar 

  19. Deshmukh K, Ahamed MB, Deshmukh RR, Khadheer Pasha SK, Sadasivuni KK, Ponnamma D, Chidambaram K (2016) Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur Polym J 76:14–27. https://doi.org/10.1016/j.eurpmj.2016.01.022

    Article  CAS  Google Scholar 

  20. Pretsch E, Clerc T, Seibl J, Simon W (2013) Tables of spectral data for structure determination of organic compounds. Springer, Berlin

    Google Scholar 

  21. Yang CQ, Xu Y, Wang D (1996) FT–IR spectroscopy study of the polycarboxylic acids used for paper wet strength improvement. Ind Eng Chem Res 35(11):4037–4042. https://doi.org/10.1021/ie960207u

    Article  CAS  Google Scholar 

  22. Fares S (2012) Influence of gamma-ray irradiation on optical and thermal degradation of Poly(ethyl methacrylate)(PEMA) Polymer. Nat Sci 4(7):499–507

    CAS  Google Scholar 

  23. Carrero-Mantilla JI, Rojas-González AF, Cárdenas-Giraldo J (2016) A unified integral interpretation of thermal analysis data. Ingeniería y Competitividad 18(1):105–115

    Article  Google Scholar 

  24. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1):1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  25. Waters DN, Paddy JL (1988) Equations for isothermal differential scanning calorimetric curves. Anal Chem 60(1):53–57. https://doi.org/10.1021/ac00152a014

    Article  CAS  Google Scholar 

  26. Thomas P, Ashokbabu A, Vaish R (2020) Structural, thermal and dielectric properties and thermal degradation kinetics of nylon 11/CaCu3Ti4O12 (CCTO) nanocomposites. J Therm Anal Calorim 141(3):1123–1135. https://doi.org/10.1007/s10973-019-09105-8

    Article  CAS  Google Scholar 

  27. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett 4(5):323–328. https://doi.org/10.1002/pol.1966.110040504

    Article  CAS  Google Scholar 

  28. Takeo O (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886. https://doi.org/10.1246/bcsj.38.1881

    Article  Google Scholar 

  29. Šimon P, Thomas P, Dubaj T, Cibulková Z, Peller A, Veverka M (2014) The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim 115(1):853–859. https://doi.org/10.1007/s10973-013-3459-7

    Article  CAS  Google Scholar 

  30. Navarro J, Roig A, Noguera P, Vicente F, Vilaplana J, López J (1994) Electrochemical behaviour and electrical percolation in graphite-epoxy electrodes. J Mater Sci 29(17):4604–4610. https://doi.org/10.1007/BF00376284

    Article  CAS  Google Scholar 

  31. An J-E, Jeong YG (2013) Structure and electric heating performance of graphene/epoxy composite films. Eur Polym J 49(6):1322–1330. https://doi.org/10.1016/j.eurpmj.2013.02.005

    Article  CAS  Google Scholar 

  32. Pierrard V, Khazanov GV, Lemaire JF (2007) Current–voltage relationship. J Atmos Solar Terr Phys 69:2048–2057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the Firat University Research Fund for financial support to this project (FUBAP, FF.20.15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Demirelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirelli, K., Barım, E., Tuncer, H. et al. Synthesis and characterization of N-(2-acetyl benzofuran-3-yl) methacryl amide and ethyl methacrylate copolymer/graphite oxide composites and study of their kinetic and electrical properties. Polym. Bull. 79, 4721–4743 (2022). https://doi.org/10.1007/s00289-021-03730-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03730-w

Keywords

Navigation