Skip to main content
Log in

Silver nanoparticles enhanced crystallization of polyethylene terephthalate-co-polyethylene glycol (PET-PEG) thermoplastic elastomer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate (PET) based elastomers have witnessed increasing applications in various emerging fields, and the crystallization modification of the PET-based elastomers with functional nanoparticles is considered as the effective strategy for simultaneously improving their processing efficiency, mechanical properties as well as functionalities. Therefore, we herein have synthesized a range of silver nanoparticles (Ag NPs) with different sizes using a high temperature resistance polymer as the surface capping agent. Furthermore, we found that the melt crystallization of a semi-crystallized PET-based elastomer, which was obtained by introducing the flexible polyethylene glycol (PEG1000) segment into PET backbone via condensation polymerization, can be effectively tuned by the synthesized Ag NPs with different sizes. The surface morphology, optical properties, crystallization behavior and mechanical properties of the Ag NPs modified PET-PEG elastomers have been systematically characterized using SEM, optical spectroscopy, DSC, XRD, polarized optical microscope and electromechanical analyzer. The results indicated that the Ag NPs with average size of ~ 60 nm serve as the optimized nucleating agent to not only accelerate the crystallization but also enhance the mechanical properties of PET-PEG elastomers (i.e., tensile strength and modulus were enhanced by 9.6% and 76.6%, respectively). Meanwhile, the intrinsic blue fluorescence emission of PET-PEG elastomers is well preserved after Ag NPs modification. Given the diverse functional properties of Ag NPs, the present work will open the new way for fabrication of multifunctional polyester elastomers with tunable mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheirs J, Long TE (2004) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, England

    Book  Google Scholar 

  2. Wang G, Jiang M, Zhang Q, Wang R, Zhou G (2017) Biobased copolyesters: synthesis, crystallization behavior, thermal and mechanical properties of poly (ethylene glycol sebacate-co-ethylene glycol 2, 5-furan dicarboxylate). RSC Adv 7:13798–13807. https://doi.org/10.1039/C6RA27795K

    Article  CAS  Google Scholar 

  3. Hong M, Tang X, Newell B, Chen EY-X (2017) “Nonstrained” γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules. https://doi.org/10.1021/acs.macromol.7b02174

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kandaswamy N (2019) Synthesis, characterisation and antimicrobial evaluation of chalcone coupled biscoumarin copolyesters. Macromol Res 27(6):593–600. https://doi.org/10.1007/s13233-019-7082-8

    Article  CAS  Google Scholar 

  5. Morales-Huerta JC, Martinez de Ilarduya A, León S, Muñoz-Guerra S (2018) Isomannide-containing poly (butylene 2, 5-furandicarboxylate) copolyesters via ring opening polymerization. Macromolecules. https://doi.org/10.1021/acs.macromol.8b00487

    Article  Google Scholar 

  6. Wojtczak M, Dutkiewicz S, Galeski A, Gutowska A (2017) Classification of aliphatic-butylene terephthalate copolyesters in relation to aliphatic/aromatic ratio. Polymer 113:119–134. https://doi.org/10.1016/j.polymer.2017.02.054

    Article  CAS  Google Scholar 

  7. Zhao H-B, Wang Y-Z (2017) Design and synthesis of PET-based copolyesters with flame-retardant and antidripping performance. Macromol Rapid Comm 38(23):1700451. https://doi.org/10.1002/marc.201700451

    Article  CAS  Google Scholar 

  8. Choochottiros C (2016) Effect of polycaprolactone-co-polylactide copolyesters’ arms in enhancing optical transparent PLA toughness. Macromol Res 24(9):838–846. https://doi.org/10.1007/s13233-016-4118-1

    Article  CAS  Google Scholar 

  9. Park JY, Lee WJ, Kwon B-S, Nam S-Y, Choa S-H (2018) Highly stretchable and conductive conductors based on Ag flakes and polyester composites. Microelectron Eng 199:16–23. https://doi.org/10.1016/j.mee.2018.07.006

    Article  CAS  Google Scholar 

  10. Ning NY, Li SQ, Sun HB, Wang Y, Liu ST, Yao Y, Yan BY, Zhang LQ, Tian M (2017) Largely improved electromechanical properties of thermoplastic polyurethane dielectric elastomers by the synergistic effect of polyethylene glycol and partially reduced graphene oxide. Compos Sci Technol 142:311–320. https://doi.org/10.1016/j.compscitech.2017.02.015

    Article  CAS  Google Scholar 

  11. Stempfle F, Schemmer B, Oechsle AL, Mecking S (2015) Thermoplastic polyester elastomers based on long-chain crystallizable aliphatic hard segments. Polym Chem 6(40):7133–7137. https://doi.org/10.1039/c5py01209k

    Article  CAS  Google Scholar 

  12. He X, Zhou X, Jia K, Zhang D, Shou H, Liu X (2016) Incorporation of polyethylene glycol into polyethylene terephthalate towards blue emitting co-polyester. Mater Lett 182:367–371. https://doi.org/10.1016/j.matlet.2016.07.022

    Article  CAS  Google Scholar 

  13. Shou H, Jia K, Zhou X, Gao L, He X, Zhou X, Zhang D, Liu X (2017) Large scale synthesis of an amorphous polyester elastomer with tunable mechanoluminescence and preliminary application in optical strain sensing. J Mater Chem C 5(17):4134–4138. https://doi.org/10.1039/C7TC00433H

    Article  CAS  Google Scholar 

  14. Dong SY, Jia YQ, Xu XZ, Luo JE, Han JB, Sun XL (2019) Crystallization and properties of poly (ethylene terephthalate)/layered double hydroxide nanocomposites. J Colloid Interf Sci 539:54–64. https://doi.org/10.1016/j.jcis.2018.12.030

    Article  CAS  Google Scholar 

  15. Jie B, Sheng-Rong Y, Lin-Xian F (2003) Heterogeneous nucleation on the crystallization poly (ethylene terephthalate). J Polym Sci Part B Polym Phys 41(18):2135–2144. https://doi.org/10.1002/polb.10538

    Article  CAS  Google Scholar 

  16. Yang Y, Gu H (2007) Preparation and properties of deep dye fibers from poly (ethylene terephthalate)/SiO2 nanocomposites by in situ polymerization. J Appl Polym Sci 105(4):2363–2369. https://doi.org/10.1002/app.23069

    Article  CAS  Google Scholar 

  17. Lee WD, Im SS (2007) Thermomechanical properties and crystallization behavior of layered double hydroxide/poly (ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J Polym Sci Pol Phys 45(1):28–40. https://doi.org/10.1002/polb.20993

    Article  CAS  Google Scholar 

  18. Hu G, Feng X, Zhang S, Yang M (2008) Crystallization behavior of poly (ethylene terephthalate)/multiwalled carbon nanotubes composites. J Appl Polym Sci 108(6):4080–4089. https://doi.org/10.1002/app.28048

    Article  CAS  Google Scholar 

  19. Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23. https://doi.org/10.1016/j.susmat.2017.08.001

    Article  CAS  Google Scholar 

  20. Bollella P, Schulz C, Favero G, Mazzei F, Ludwig R, Gorton L, Antiochia R (2016) Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanal. https://doi.org/10.1002/elan.201600476

    Article  Google Scholar 

  21. Kim M, Kang SW (2019) Comparison of functional groups in polymer/Ag nanoparticles/electron acceptor composite membranes for olefin/paraffin separation. Polym Compos 40(3):1165–1169. https://doi.org/10.1002/pc.24825

    Article  CAS  Google Scholar 

  22. Klyukin D, Silvennoinen M, Krykova V, Svirko Y, Sidorov A, Nikonorov N (2017) Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles. Opt Express 25(11):12944–12951. https://doi.org/10.1364/OE.25.012944

    Article  CAS  PubMed  Google Scholar 

  23. Li K, Chen X, Wang Z, Xu L, Fu W, Zhao L, Chen L (2017) Temperature-responsive catalytic performance of Ag nanoparticles endowed by poly (N-isopropylacrylamide-co-acrylic acid) microgels. Polym Compos 38(4):708–718. https://doi.org/10.1002/pc.23630

    Article  CAS  Google Scholar 

  24. Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y, Itoh A, Yokota T, Hashizume D, Someya T (2017) Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater 16:834. https://doi.org/10.1038/nmat4904

    Article  CAS  PubMed  Google Scholar 

  25. Méndez-Medrano MG, Kowalska E, Lehoux A, Herissan A, Ohtani B, Bahena D, Briois V, Colbeau-Justin C, Rodríguez-López JL, Remita H (2016) Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis. J Phys Chem C 120(9):5143–5154. https://doi.org/10.1021/acs.jpcc.5b10703

    Article  CAS  Google Scholar 

  26. Vukoje ID, Džunuzović ES, Dimitrijević S, Ahrenkiel SP, Nedeljković JM (2019) Size-dependent antibacterial properties of Ag nanoparticles supported by amino-functionalized poly (GMA-co-EGDMA) polymer. Polym Compos 40(7):2901–2907. https://doi.org/10.1002/pc.25120

    Article  CAS  Google Scholar 

  27. Shankar S, Rhim J-W, Won K (2018) Preparation of poly (lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int J Biol Macromol 107:1724–1731. https://doi.org/10.1016/j.ijbiomac.2017.10.038

    Article  CAS  PubMed  Google Scholar 

  28. Yang W, Wu K, Liu X, Jiao Y, Zhou C (2018) Construction and characterization of an antibacterial/anticoagulant dual-functional surface based on poly l-lactic acid electrospun fibrous mats. Mater Sci Eng C 92:726–736. https://doi.org/10.1016/j.msec.2018.07.014

    Article  CAS  Google Scholar 

  29. Marchini LG, Parra DF, Rangari VK (2019) Incorporation of silver nanoparticles in zinc oxide matrix in polyester thermoplastic elastomer (TPE-E) aiming antibacterial Activity. In: Li B, Li J, Ikhmayies S, Zhang M, Kalay YE, Carpenter JS, Hwang J-Y, Monteiro SN, Bai C, Escobedo-Diaz JP, Spena PR, Goswami R (eds) Characterization of minerals, metals, and materials 2019. Springer, Cham, pp 79–88

    Chapter  Google Scholar 

  30. Araki T, Nogi M, Suganuma K, Kogure M, Kirihara O (2011) Printable and stretchable conductive wirings comprising silver flakes and elastomers. IEEE Electr Device L 32(10):1424–1426. https://doi.org/10.1109/LED.2011.2161663

    Article  CAS  Google Scholar 

  31. Kumar A, Saghlatoon H, La T-G, Mahdi Honari M, Charaya H, Abu Damis H, Mirzavand R, Mousavi P, Chung H-J (2017) A highly deformable conducting traces for printed antennas and interconnects: silver/fluoropolymer composite amalgamated by triethanolamine. Flex Print Electron 2(4):045001. https://doi.org/10.1088/2058-8585/aa8d38

    Article  CAS  Google Scholar 

  32. Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J-P (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001. https://doi.org/10.1088/0957-4484/24/45/452001

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T (2015) Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Funct Mater 25(21):3114–3121. https://doi.org/10.1002/adfm.201500628

    Article  CAS  Google Scholar 

  34. Moreno I, Navascues N, Arruebo M, Irusta S, Santamaria J (2013) Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites. Nanotechnology 24(27):275603. https://doi.org/10.1088/0957-4484/24/27/275603

    Article  CAS  PubMed  Google Scholar 

  35. Jia K, Shou H, Wang P, Zhou X, Liu X (2016) Controlled synthesis of silver nanostructures stabilized by fluorescent polyarylene ether nitrile. Appl Surf Sci 377:180–183. https://doi.org/10.1016/j.apsusc.2016.03.126

    Article  CAS  Google Scholar 

  36. Ahrland S, Chatt J, Davies NR, Williams AA (1957) Relative tendencies of similar organic derivatives of nitrogen(III), phosphorus(III), arsenic(III), oxygen(II), sulphur(II) and selenium(II) to form complexes with silver ions. Nature 179(4571):1187–1188. https://doi.org/10.1038/1791187c0

    Article  CAS  Google Scholar 

  37. Coskun S, Aksoy B, Unalan HE (2011) Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des 11(11):4963–4969. https://doi.org/10.1021/cg200874g

    Article  CAS  Google Scholar 

  38. Leng Z, Wu D, Yang Q, Zeng S, Xia W (2017) Facile and one-step liquid phase synthesis of uniform silver nanoparticles reduction by ethylene glycol. Opt Int J Light Electron Opt. https://doi.org/10.1016/j.ijleo.2017.10.024

    Article  Google Scholar 

  39. Levard C, Reinsch C, B, Marc Michel F, Oumahi C, Lowry G, Brown G, (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–5266. https://doi.org/10.1021/es2007758

    Article  CAS  PubMed  Google Scholar 

  40. Mozhayeva D, Engelhard C (2017) Separation of silver nanoparticles with different coatings by capillary electrophoresis coupled to ICP-MS in single particle mode. Anal Chem. https://doi.org/10.1021/acs.analchem.7b01626

    Article  PubMed  Google Scholar 

  41. Padmos J, Boudreau RTM, Weaver D, Zhang P (2015) The impact of protecting ligands on the surface structure and antibacterial activity of silver nanoparticles. Langmuir. https://doi.org/10.1021/acs.langmuir.5b00049

    Article  PubMed  Google Scholar 

  42. Zhang D, Zhang R, He X, Jia K, Liu X (2019) Facile fabrication of silver decorated polyarylene ether nitrile composited micro/nanospheres via microemulsion self-assembling. Compos B Eng 156:399–405. https://doi.org/10.1016/j.compositesb.2018.08.046

    Article  CAS  Google Scholar 

  43. Jia K, Wang P, Wei S, Huang Y, Liu X (2017) Scalable creation of gold nanostructures on high performance engineering polymeric substrate. Appl Surf Sci 426:579–586. https://doi.org/10.1016/j.apsusc.2017.07.116

    Article  CAS  Google Scholar 

  44. Jia K, Khaywah MY, Li Y, Bijeon JL, Adam PM, Déturche R, Guelorget B, François M, Louarn G, Ionescu RE (2014) Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films. ACS Appl Mater Interfaces 6(1):219–227. https://doi.org/10.1021/am403943q

    Article  CAS  PubMed  Google Scholar 

  45. Jia K, Xie J, He X, Zhang D, Hou B, Li X, Zhou X, Hong Y, Liu X (2020) Polymeric micro-reactors mediated synthesis and assembly of Ag nanoparticles into cube-like superparticles for SERS application. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125123

    Article  Google Scholar 

  46. Coronado EA, Encina ER, Stefani FD (2011) Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale 3(10):4042–4059. https://doi.org/10.1039/C1NR10788G

    Article  CAS  PubMed  Google Scholar 

  47. Jia K, Wang P, Yuan L, Zhou X, Chen W, Liu X (2015) Facile synthesis of luminescent silver nanoparticles and fluorescence interactions with blue-emitting polyarylene ether nitrile. J Mater Chem C 3(15):3522–3529. https://doi.org/10.1039/C4TC02850C

    Article  CAS  Google Scholar 

  48. Sauer BB, Kampert WG, Neal Blanchard E, Threefoot SA, Hsiao BS (2000) Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms. Polymer 41(3):1099–1108. https://doi.org/10.1016/S0032-3861(99)00258-X

    Article  CAS  Google Scholar 

  49. Lv Q, Xu C, Wu D, Wang Z, Lan R, Wu L (2017) The role of nanocrystalline cellulose during crystallization of poly (ε-caprolactone) composites: nucleation agent or not? Compos Part A Appl Sci Manuf 92:17–26. https://doi.org/10.1016/j.compositesa.2016.10.035

    Article  CAS  Google Scholar 

  50. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—Crystallization and mechanical property effects. Compos Sci Technol 70(5):815–821. https://doi.org/10.1016/j.compscitech.2010.01.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the financial support from National Natural Science Foundation of China (Project No. 51403029), the Fundamental Research Funds for the Central Universities (ZYGX2019J026), Sichuan Science and Technology Program (2020YFG0100, 2021YFH0023) and International Science and Technology Cooperation Project from Chengdu municipal government (2019-GH02-00037-HZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobo Liu or Kun Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Shou, H., Liu, X. et al. Silver nanoparticles enhanced crystallization of polyethylene terephthalate-co-polyethylene glycol (PET-PEG) thermoplastic elastomer. Polym. Bull. 79, 4593–4605 (2022). https://doi.org/10.1007/s00289-021-03725-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03725-7

Keywords

Navigation