Skip to main content

Advertisement

Log in

Evaluation of the osteoinductive potential of HDPSCs cultured on β-glycerol phosphate functionalized MWCNTs/PCL membranes for bone regeneration

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The ideal construction and tissue substitute with adjusted characteristics and functionalities for the regeneration of bone defects are still under investigation. Current approaches have focused on the use of various biocompatible materials that have been synthesized with carbon-based materials with physicochemical characteristics that contribute to the differentiation of specific stem cell lineages. This work reports on the potential of poly-ε-caprolactone (PCL) membranes loaded with β-glycerol phosphate (β-GP) functionalized multiwall carbon nanotubes (f-MWCNTs) to induce differentiation of human dental pulp stem cells (HDPSCs) into osteoblasts. The HDPSCs were seeded on unmodified PCL + f-MWCNTs and β-GP decorated PCL + f-MWCNTs membranes, and then, physicochemical, mechanically and biologically characterized. It was observed an increase in the mechanical properties of PCL by MWCNTs addition rendering a more hydrophilic membrane those containing β-GP. Live/Dead and MTT cytotoxicity tests showed a higher number of living cells in PCL + f-MWCNTs + β-GP membranes, whereas von Kossa showed calcium deposits. After Wistar rat implantation, new bone formation was found around the critical size calvaria defects indicating that these membranes have the ability to enhance the osteodifferentiation of HDPSCs by increasing mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aboushady IM, Salem ZA, Sabry D, Mohamed A (2018) Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources. J Clin Exp Dent 10:e7–e13. https://doi.org/10.4317/jced.53957

    Article  PubMed  PubMed Central  Google Scholar 

  2. Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47:2970–2975. https://doi.org/10.1016/j.carbon.2009.06.044

    Article  CAS  Google Scholar 

  3. Baker CE, Marvi T, Austin TM, Payne S, Mignemi ME, Gailani D, Wheeler AP, Nguyen TT, Lovejoy SA, Martus JE, Mencio GA, Schoenecker JG (2018) Dilutional coagulopathy in pediatric scoliosis surgery: a single center report. Pediatr Anesth 28:974–981. https://doi.org/10.1111/pan.13488

    Article  Google Scholar 

  4. Barradas A, Yuan H, van Blitterswijk C, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cells Mater 21:407–429. https://doi.org/10.22203/eCM.v021a31

    Article  CAS  Google Scholar 

  5. Baykan E, Koc A, Eser Elcin A, Murat Elcin Y (2014) Evaluation of a biomimetic poly( ε -caprolactone)/β -tricalcium phosphate multispiral scaffold for bone tissue engineering: In vitro and in vivo studies. Biointerphases 9:029011. https://doi.org/10.1116/1.4870781

    Article  CAS  PubMed  Google Scholar 

  6. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–27

    Article  CAS  Google Scholar 

  7. Bosi S, Ballerini L, Prato M (2013) Carbon nanotubes in tissue engineering. Top Curr Chem. https://doi.org/10.1007/128_2013_474

    Article  Google Scholar 

  8. Caeiro JR, González P, Guede D (2013) Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea. Revista de Osteoporosis y Metabolismo Mineral 5:99–108. https://doi.org/10.4321/S1889-836X2013000200007

    Article  Google Scholar 

  9. Das K, Madhusoodan A, Mili B, Kumar A, Saxena A, Kumar K, Sarkar M, Singh P, Srivastava S, Bag S (2017) Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. Int J Nanomed 12:3235–3252. https://doi.org/10.2147/IJN.S122945

    Article  CAS  Google Scholar 

  10. Flores-Cedillo ML, Alvarado-Estrada KN, Pozos-Guillén AJ, Murguía-Ibarra JS, Vidal MA, Cervantes-Uc JM, Rosales-Ibáñez R, Cauich-Rodríguez JV (2016) Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-015-5640-y

    Article  PubMed  Google Scholar 

  11. Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, Sugimoto S, Sato T (2018) Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23:787-793.e6. https://doi.org/10.1016/j.stem.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  12. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535. https://doi.org/10.1177/154405910208100806

    Article  CAS  PubMed  Google Scholar 

  13. Guzmán-Uribe D, Estrada KNA, de Guillén AJP, Pérez SM, Ibáñez RR (2012) Development of a three-dimensional tissue construct from dental human ectomesenchymal stem cells: in vitro and in vivo study. Open Dent J 6:226–234. https://doi.org/10.2174/1874210601206010226

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haniu H, Saito N, Matsuda Y, Tsukahara T, Usui Y, Narita N, Hara K, Aoki K, Shimizu M, Ogihara N, Takanashi S, Okamoto M, Kobayashi S, Ishigaki N, Nakamura K, Kato H (2012) Basic potential of carbon nanotubes in tissue engineering applications [WWW Document]. J Nanomater. https://doi.org/10.1155/2012/343747

    Article  Google Scholar 

  15. Huang B, Vyas C, Roberts I, Poutrel Q-A, Chiang W-H, Blaker JJ, Huang Z, Bártolo P (2019) Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Mater Sci Eng C 98:266–278. https://doi.org/10.1016/j.msec.2018.12.100

    Article  CAS  Google Scholar 

  16. Javanmard A, Mohammadi F, Mojtahedi H (2020) Reconstruction of a total rhinectomy defect by implant-retained nasal prosthesis: a clinical report. Oral Maxillofac Surg Cases 6:100141. https://doi.org/10.1016/j.omsc.2020.100141

    Article  Google Scholar 

  17. Kang E-S, Kim D-S, Suhito IR, Choo S-S, Kim S-J, Song I, Kim T-H (2017) Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials. Nano Converg. https://doi.org/10.1186/s40580-017-0096-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khan WS, Rayan F, Dhinsa BS, Marsh D (2012) An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? [WWW Document]. Stem Cells International. https://doi.org/10.1155/2012/236231

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kiang JD, Wen JH, del Álamo JC, Engler AJ (2013) Dynamic and reversible surface topography influences cell morphology. J Biomed Mater Res 101A:2313–2321. https://doi.org/10.1002/jbm.a.34543

    Article  CAS  Google Scholar 

  20. Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care 2:306–316. https://doi.org/10.1089/wound.2012.0420

    Article  Google Scholar 

  21. Krawetz RJ, Taiani JT, Wu YE, Liu S, Meng G, Matyas JR, Rancourt DE (2011) Collagen I scaffolds cross-linked with beta-glycerol phosphate induce osteogenic differentiation of embryonic stem cells in vitro and regulate their tumorigenic potential in vivo. Tissue Eng Part A 18:1014–1024. https://doi.org/10.1089/ten.tea.2011.0174

    Article  CAS  Google Scholar 

  22. Langenbach F, Handschel J (2013) Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 4:117. https://doi.org/10.1186/scrt328

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee H-S, Kang J-I, Chung W-J, Lee DH, Lee BY, Lee S-W, Yoo SY (2018) Engineered phage matrix stiffness-modulating osteogenic differentiation. ACS Appl Mater Interfaces 10:4349–4358. https://doi.org/10.1021/acsami.7b17871

    Article  CAS  PubMed  Google Scholar 

  24. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441. https://doi.org/10.1038/nature08602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin-Del-Campo M, Rosales-Ibañez R, Alvarado K, Sampedro JG, Garcia-Sepulveda CA, Deb S, San Román J, Rojo L (2016) Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce in vivo bone regeneration in critical sized defects. Biomater Sci 4:1596–1604. https://doi.org/10.1039/c6bm00459h

    Article  CAS  PubMed  Google Scholar 

  26. Matassi F, Nistri L, Chicon Paez D, Innocenti M (2011) New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 8:21–24

    PubMed  PubMed Central  Google Scholar 

  27. Mooney E, Dockery P, Greiser U, Murphy M, Barron V (2008) Carbon nanotubes and mesenchymal stem cells: biocompatibility. Prolif Differ Nano Lett 8:2137–2143. https://doi.org/10.1021/nl073300o

    Article  CAS  Google Scholar 

  28. Pan L, Pei X, He R, Wan Q, Wang J (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B Biointerfaces 93:226–234. https://doi.org/10.1016/j.colsurfb.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  29. Pei B, Wang W, Dunne N, Li X (2019) Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Nanomaterials (Basel). https://doi.org/10.3390/nano9101501

    Article  Google Scholar 

  30. Qin H-L, Leng J, Zhang W, Kantchev EAB (2018) DFT modelling of a diphosphane—N-heterocyclic carbene–Rh(I) pincer complex rearrangement: a computational evaluation of the electronic effects in C-P bond activation. Dalton Trans 47:2662–2669. https://doi.org/10.1039/C7DT04759B

    Article  CAS  PubMed  Google Scholar 

  31. Ravanbakhsh H, Bao G, Mongeau L (2020) Carbon nanotubes promote cell migration in hydrogels. Sci Rep 10:2543. https://doi.org/10.1038/s41598-020-59463-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G (2019) A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 121:38–54. https://doi.org/10.1016/j.ijbiomac.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  33. Schemitsch EH (2017) Size matters: defining critical in bone defect size! J Orthop Trauma 31:S20. https://doi.org/10.1097/BOT.0000000000000978

    Article  PubMed  Google Scholar 

  34. Shokrieh MM, Saeedi A, Chitsazzadeh M (2013) Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites. J Nanostruct Chem 3:20. https://doi.org/10.1186/2193-8865-3-20

    Article  Google Scholar 

  35. Sparks NRL, Martinez IKC, Soto CH, Zur Nieden NI (2018) Low osteogenic yield in human pluripotent stem cells associates with differential neural crest promoter methylation. Stem Cells 36:349–362. https://doi.org/10.1002/stem.2746

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Cao X, Zhang Y (2017) A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget 8:31612–31625. https://doi.org/10.18632/oncotarget.15779

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Inuzuka H, Fukushima H, Wan L, Gao D, Shaik S, Sarkar FH, Wei W (2012) Emerging roles of the FBW7 tumour suppressor in stem cell differentiation. EMBO Rep 13:36–43. https://doi.org/10.1038/embor.2011.231

    Article  CAS  Google Scholar 

  38. Xing W, Pourteymoor S, Mohan S (2011) Ascorbic acid regulates osterix expression in osteoblasts by activation of prolyl hydroxylase and ubiquitination-mediated proteosomal degradation pathway. Physiol Genom 43:749–757. https://doi.org/10.1152/physiolgenomics.00229.2010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Rosales-Ibáñez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Cedillo, M.L., Rosales-Ibáñez, R., Martin-del-Campo-Fierro, M. et al. Evaluation of the osteoinductive potential of HDPSCs cultured on β-glycerol phosphate functionalized MWCNTs/PCL membranes for bone regeneration. Polym. Bull. 79, 7229–7243 (2022). https://doi.org/10.1007/s00289-021-03721-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03721-x

Keywords

Navigation