Skip to main content
Log in

Rheology of a polypropylene/low-density polyethylene blending melt: Fitting dynamic rheological data by Palierne model and Lee and Park model

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dynamic rheological behavior of polypropylene (PP)/low-density polyethylene (LDPE) blending melts at 210 °C and 230 °C was measured by small-amplitude oscillatory shear mode on a rotational rheometer. The complex viscosity and dynamic modulus of pure PP are higher than those of pure LDPE at low frequency. For the blends with dispersion morphologies, Palierne model is applied to fit the storage modulus data and the model almost underestimates the data since most of the experimental dynamic modulus of the blends lay between that of pure PP and pure LDPE. While Lee and Park model predicts the dynamic storage data well for the PP/LDPE blends 90/10, 10/90 and 70/30 blends. For the 30/70 blend, this model describes the data much closer than Palierne model and a little deviation occurs at low frequency. The comparison between the two models’ fitting results indicates interaction among dispersed droplets should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Willemse RC, de Posthuma BA, van Dam J et al (1998) Co-continuous morphologies in polymer blends: a new model. Polymer 39(24):5879–5887

    Article  CAS  Google Scholar 

  2. Wang H, Zhang Y, Huang Z et al (2016) Experimental and modeling study of the compressive behavior of PC/ABS at low, moderate and high strain rates. Polym Test 56:115–123

    Article  CAS  Google Scholar 

  3. Liu WB, Kuo WF, Chiang CJ et al (1996) In situ compatibilization of PBT/PPO blends. Eur Polym J 32:91–99

    Article  CAS  Google Scholar 

  4. Zhao Y, Liu Z, Su B et al (2015) Property enhancement of PP-EPDM thermoplastic vulcanizates via shear-induced break-up of nano-rubber aggregates and molecular orientation of the matrix. Polymer 63:170–178

    Article  CAS  Google Scholar 

  5. Guo HF, Packirisamy S, Gvozdic NV et al (1997) Prediction and manipulation of the phase morphologies of multiphase polymer blends: 1. Ternary Syst Polym 38:785–794

    Article  CAS  Google Scholar 

  6. Reignier J, Favis BD, Heuzey MC (2003) Factors influencing encapsulation behavior in composite droplet-type polymer blends. Polymer 44:49–59

    Article  CAS  Google Scholar 

  7. Hobbs SY, Dekkers MEJ, Watkins VH (1988) Effect of interfacial forces on polymer blend morphologies. Polymer 29:1598–1602

    Article  CAS  Google Scholar 

  8. Nauman EB, He DQ (2001) Nonlinear diffusion and phase separation. Chem Eng Sci 56:1999–2018

    Article  CAS  Google Scholar 

  9. Horiuchi S, Matchariyakul YK, Kitano T (1997) Morphology development through an interfacial reaction in ternary immiscible polymer blends. Macromolecules 30:3664–3670

    Article  CAS  Google Scholar 

  10. Jegat C, Virgilio N, Favis BD (2017) Self-assembly of oil microdroplets at the interface in co-continuous polymer blends. Eur Polym J 93:259–271

    Article  CAS  Google Scholar 

  11. Li LP, Yin B, Yang MB (2011) Morphology prediction and the effect of core–shell structure on the rheological behavior of PP/EPDM/HDPE ternary blends. Polym Eng Sci 51:2425–2433

    Article  CAS  Google Scholar 

  12. Li LP, Yin B, Zhou Y et al (2012) Characterization of PA6/EPDM-g-MA/HDPE ternary blends: the role of core-shell structure. Polymer 53:3043–3051

    Article  CAS  Google Scholar 

  13. Fan JF, Cao LM, Huang JR et al (2019) The construction and verification of toughening model and formula of binary poly(lactic acid)-based TPV with co-continuous structure. Mater Chem Phys 231:95–104

    Article  CAS  Google Scholar 

  14. Virgilio N, Sarazin P, Favis BD (2011) Ultraporous poly(L-lactide) scaffolds prepared with quaternary immiscible polymer blends modified by copolymer brushes at the interface. Polymer 52:1483–1489

    Article  CAS  Google Scholar 

  15. Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol 38:1405–1425

    Article  CAS  Google Scholar 

  16. Choi SJ, Schowalter WR (1975) Rheological properties of nondilute suspensions of deformable particles. Phys Fluids 18:420–427

    Article  Google Scholar 

  17. Gramespacher H, Meissner J (1992) Interfacial-tension between polymer melts measured by shear oscillations of their blends. J Rheol 36:1127–1141

    Article  CAS  Google Scholar 

  18. Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  19. Chen J, Wu D (2014) Poly(trimethylene terephthalate)/poly(butylenes succinate) blend: phase behavior and mechanical property control using its transesterification system as the compatibilizer. Mater Chem Phys 148:554–561

    Article  CAS  Google Scholar 

  20. Maani A, Heuzey MC, Carreau PJ (2011) Coalescence in thermoplastic olefin (TPO) blends under shear flow. Rheol Acta 50:881–895

    Article  CAS  Google Scholar 

  21. Parpaite T, Otazaghine B, Caro AS et al (2016) Janus hybrid silica/polymer nanoparticles as effective compatibilizing agents for polystyrene/polyamide-6 melted blends. Polymer 90:34–44

    Article  CAS  Google Scholar 

  22. Lacroix C, Aressy M, Carreau PJ (1997) Linear viscoelastic behavior of molten polymer blends: a comparative study of the Palierne and Lee and Park models. Rheol Acta 36:416–428

    Article  CAS  Google Scholar 

  23. Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces. I. J Chem Phys 95:1242–1248

    Article  CAS  Google Scholar 

  24. Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277

    Article  CAS  Google Scholar 

  25. Asthana H, Jayaraman K (1999) Rheology of reactively compatibilized polymer blends with varying extent of interfacial reaction. Macromolecules 32:3412–3419

    Article  CAS  Google Scholar 

  26. Liao HY, Tao GL, Liu CL et al (2016) A polypropylene/high density polyethylene blend compatibilized with an ethylene-propylene-diene monomer block copolymer: fitting dynamic rheological data by emulsion models with a physical scheme. J Appl Polym Sci 43709:1–8

    Google Scholar 

  27. Bousmina M (1999) Rheology of polymer blends: linear model for viscoelastic emulsions. Rheol Acta 38:73–83

    Article  CAS  Google Scholar 

  28. Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  CAS  Google Scholar 

  29. Zhang ZY, Qiao JL (1993) Method of estimating interfacial tension in polymer systems. Acta Polymerica Sinca 3:343–347

    Google Scholar 

  30. Wu RJ (1998) Polymer interface and adhesion. Science Press, Beijing

    Google Scholar 

  31. Kwon MK, Cho KS (2016) Analysis of the Palierne model by relaxation time spectrum. Korea-Australia Rheol J 28:23–31

    Article  Google Scholar 

  32. Mellema J, Willemse MWM (1983) Effective viscosity of dispersions approached by a statistical continuum method. Phys A 122:286–312

    Article  Google Scholar 

  33. Onuki A (1987) Viscosity enhancement by domains in phase-separating fluids near the critical point: proposal critical rheology. Physica Rev A 35:5149–5155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-yong Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Hy., Liao, Rr., Li, Sq. et al. Rheology of a polypropylene/low-density polyethylene blending melt: Fitting dynamic rheological data by Palierne model and Lee and Park model. Polym. Bull. 79, 4957–4970 (2022). https://doi.org/10.1007/s00289-021-03720-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03720-y

Keywords

Navigation