Skip to main content
Log in

Coalescence in thermoplastic olefin (TPO) blends under shear flow

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this article, the capability of the Lee–Park (LP) model (Lee and Park, J Rheol 38:1405–1425, 1994) in predicting the extent of drop coalescence under transient shear has been evaluated. Thermoplastic olefin blends of polypropylene (PP) and three types of metallocene catalyzed ethylene copolymers (EC) with different melt viscosities were investigated. The interfacial tension between the PP and the ECs was determined by means of linear viscoelastic measurements using a simplified version of the Palierne (Rheol Acta 29:204–214, 1990) model as well as the Choi and Schowalter (Phys Fluids 18:420–427, 1975) equation. Flow-induced coalescence was investigated by shearing the samples at a very low shear rate of 0.01 s − 1. The size evolution and orientation of the dispersed droplets under shear were correlated with the transient rheological data. To account for the non-affine deformation, an additional slip parameter (Lacroix et al., J Non-Newton Fluid Mech 86:37–59, 1999) was introduced into the LP model. The modified model (LPL model) was found to predict well the morphological state of all blends in conjunction with the rheological data, whereas in most of the cases, the LP model significantly underestimated the interfacial area (Q). Coalescence was favored by a decrease of the viscosity of the dispersed phase. Smaller viscosity droplets increased the interfacial mobility and, hence, reduced the drainage time promoting the coalescence of two approaching droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anastasiadis SH, Gancarz I, Koberstein JT (1988) Interfacial tension of immiscible polymer blends: temperature and molecualr weight dependence. Macromolecules 21:2980–2987

    Article  CAS  Google Scholar 

  • Batchelor GK, Green JT (1972) Hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J Fluid Mech 56:375–400

    Article  Google Scholar 

  • Bensason S, Stepanov EV, Chum S, Hiltner A, Baer E (1997) Deformation of elastomeric ethylene-octene copolymers. Macromolecules 30:2436–2444

    Article  CAS  Google Scholar 

  • Bin Wadud SE, Baird DG (2000) Shear and extensional rheology of sparsely branched metallocene-catalyzed polyethylenes. J Rheol 44:1151–1167

    Article  CAS  Google Scholar 

  • Chesters AK (1991) Modelling of coalescence processes in fluid-liquid dispersions. A review of current understanding. Chem Eng Res Des 69:259–227

    CAS  Google Scholar 

  • Choi SJ, Schowalter WR (1975) Rheological properties of nondilute suspensions of deformable particles. Phys Fluids 18:420–427

    Article  Google Scholar 

  • Davis RH, Schonberg JA, Rallison JM (1989) The lubrication force between two viscous drops. Phys Fluids A (Fluid Dynamics) 1:77–81

    Article  CAS  Google Scholar 

  • Doerpinghaus PJ, Baird DG (2003) Separating the effects of sparse long-chain branching on rheology from those due to molecular weight in polyethylenes. J Rheol 47:717–736

    Article  CAS  Google Scholar 

  • Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces. I. J Chem Phys 95:1242–1248

    Article  CAS  Google Scholar 

  • Ellingson PC, Strand DA, Cohen A, Sammler RL, Carriere CJ (1994) Molecular weight dependence of polystyrene/poly(methyle methacrylate) interfacial tension probed by imbedded fiber-retraction. Macromolecules 27:1643–1647

    Article  CAS  Google Scholar 

  • Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  CAS  Google Scholar 

  • Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36:1127–1141

    Article  CAS  Google Scholar 

  • Grmela M, Ait-Kadi A (1994) Comments on the Doi-Ohta theory of blends. J Non-Newton Fluid Mech 55:191–195

    Article  CAS  Google Scholar 

  • Guenther GK, Baird DG (1996) An evaluation of the Doi-Ohta theory for an immiscible polymer blend. J Rheol 40:1–20

    Article  CAS  Google Scholar 

  • Guidoa S, Simeonea M, Greco F (2003) Effects of matrix viscoelasticity on drop deformation in dilute polymer blends under slow shear flow. Polymer 44:467–471

    Article  Google Scholar 

  • Huitric J, Moan M, Carreau PJ, Dufaure N (2007) Effect of reactive compatibilization on droplet coalescence in shear flow. J Non-Newton Fluid Mech 145:139–149

    Article  CAS  Google Scholar 

  • Jancar J, DiAnselmo A, DiBenedetto AT, Kucera J (1993) Failure mechanics in elastomer toughened polypropylene. Polym 34:1684–1694

    Article  CAS  Google Scholar 

  • Jiang W, Tjong SC, Li RKY (2000) Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed. Polym 41:3479–3482

    Article  CAS  Google Scholar 

  • Kim YS, Chung CI, Lai SY, Hyun KS (1996) Melt rheological and thermodynamic properties of polyethylene homopolymers and poly(ethylene-α-olefin) copolymers with respect to molecular composition and structure. J Appl Polym Sci 59:125–137

    Article  CAS  Google Scholar 

  • Kontopoulou M, Wang W, Gopakumar TG, Cheung C (2003) Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polym 44:7495–7504

    Article  CAS  Google Scholar 

  • Lacroix C, Aressy M, Carreau PJ (1997) Linear viscoelastic behavior of molten polymer blends: A comparative study of the Palierne and Lee and Park models. Rheol Acta 36:416–416

    CAS  Google Scholar 

  • Lacroix C, Grmela M, Carreau PJ (1998) Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow. J Rheol 42:41–62

    Article  CAS  Google Scholar 

  • Lacroix C, Grmela M, Carreau PJ (1999) Morphological evolution of immiscible polymer blends in simple shear and elongational flows. J Non-Newton Fluid Mech 86:37–59

    Article  CAS  Google Scholar 

  • Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol 38:1405–1425

    Article  CAS  Google Scholar 

  • Lyu S-P, Bates FS, Macosko CW (2000) Coalescence in polymer blends during shearing. AIChE J 46:229–238

    Article  CAS  Google Scholar 

  • Lyu S, Bates FS, Macosko CW (2002) Modeling of coalescence in polymer blends. AIChE J 48:7–14

    Article  CAS  Google Scholar 

  • Martin P, Carreau PJ, Favis BD, Jerome R (2000) Investigating the morphology/rheology interrelationships in immiscible polymer blends. J Rheol 44:569–583

    Article  CAS  Google Scholar 

  • McNally T, McShane P, Nally GM, Murphy WR, Cook M, Miller A (2002) Rheology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1-octene copolymer blends. Polym 43:3785–3793

    Article  CAS  Google Scholar 

  • Minale M, Mewis J, Moldenaers P (1998) Study of the morphological hysteresis in immiscible polymer blends. AIChE J 44:943–950

    Article  CAS  Google Scholar 

  • Minale M, Moldenaers P, Mewis J (1997) Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30:5470–5475

    Article  CAS  Google Scholar 

  • Nitta KH, Okamoto K, Yamaguchi M (1998) Mechanical properties of binary blends of polypropylene with ethylene–olefin copolymer. Polym 39:53–58

    Article  CAS  Google Scholar 

  • Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  • Park CC, Baldessari F, Leal LG (2003) Study of molecular weight effects on coalescence: Interface slip layer. J Rheol 47:911–942

    Article  CAS  Google Scholar 

  • Patham B, Jayaraman K (2005) Creep recovery of random ethylene-octene copolymer melts with varying comonomer content. J Rheol 49:989–999

    Article  CAS  Google Scholar 

  • Saltikov SA (1967) The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their section. In: Elias H (ed) Stereology. Springer, New York, pp 163–173

    Google Scholar 

  • Schnell M, Ziegler V, Wolf BA (2008) Evolution of viscosities and morphology for the two-phase system polyethylene oxide/poly(dimethylsiloxane). Rheol Acta 47:469–476

    Article  CAS  Google Scholar 

  • Smoluchowski V (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloidaler Lösungen. Z Phys Chem 92:129–168

    Google Scholar 

  • Van Der Wal A, Verheul AJJ, Gaymans RJ (1999) Polypropylene-rubber blends: 4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polym 40:6057–6065

    Article  Google Scholar 

  • Vinckier I, Moldenaers P, Mewis J (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40:613–631

    Article  CAS  Google Scholar 

  • Vinckier I, Moldenaers P, Terracciano AM, Grizzuti N (1998) Droplet size evolution during coalescence in semiconcentrated model blends. AIChE J 44:951–958

    Article  CAS  Google Scholar 

  • Wang H, Zinchenko AZ, Davis RH (1994) Collision rate of small drops in linear flow fields. J Fluid Mech 265:161–188

    Article  CAS  Google Scholar 

  • Xing P, Bousmina M, Rodrigue D, Kamal MR (2000) Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromolecules 33:8020–8034

    Article  CAS  Google Scholar 

  • Yang H, Park CC, Hu YT, Leal LG (2001) The coalescene of two equal-sized drops in a two-dimensional linear flow. Phys Fluids 13:1087–1106

    Article  CAS  Google Scholar 

  • Yiantsios SG, Davis RH (1990) On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface. J Fluid Mech 217:547–573

    Article  CAS  Google Scholar 

  • Yokoyama Y, Ricco T (1998) Toughening of polypropylene by different elastomeric systems. Polym 39:3675–3681

    Article  CAS  Google Scholar 

  • Yoon Y, Borrell M, Park CC, Leal LG (2005) Viscosity ratio effects on the coalescence of two equal-sized drops in a two-dimensional linear flow. J Fluid Mech 525:355–379

    Article  CAS  Google Scholar 

  • Yu TC (2001) Metallocene plastomer modification of polypropylenes. Polym Eng Sci 41:656–671

    Article  CAS  Google Scholar 

  • Yu W, Zhou C, Bousmina M (2005) Theory of morphology evolution in mixtures of viscoelastic immiscible components. J Rheol 49:215–236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has been funded by a grant of NSERC-Center of Excellence Network “The Automobile of the 21st Century.” The authors also want to thank Dr. Costeux from the Dow Chemical Company for the elastomers he provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. Carreau.

Additional information

This paper was presented at the 6th Annual European Rheology Conference, April 7–9, 2010 in Göteborg, Sweden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maani, A., Heuzey, MC. & Carreau, P.J. Coalescence in thermoplastic olefin (TPO) blends under shear flow. Rheol Acta 50, 881–895 (2011). https://doi.org/10.1007/s00397-010-0501-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0501-6

Keywords

Navigation