Skip to main content
Log in

Preparation and properties of wood dust (isoberlinia doka) reinforced polystyrene composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

There is a rising demand for natural fiber reinforced polystyrene composite materials because of the toxicity associated with mineral-based composites and the rising environmental problems associated with the proliferation of polystyrene waste. This study describes the development and characterization of wood dust (isoberlinia doka) reinforced polystyrene composites by hand lay–up method at moderate pressure and examining the influence of filler concentration (15, 30 and 45%), filler size (149, 250 and 841 µm) and NaOH concentration (2, 4 and 6%) on the mechanical behaviors of the composite. Also, the influence of filler concentration on the thermal properties of the composite was investigated. The composites produced were characterized to determine their mechanical, thermal and microstructural properties. Results from the study revealed that the mechanical properties were greatly improved at 30% filler concentration, 841 µm filler size and 4% NaOH concentration process condition. Also, there was a significant improvement in the thermal property of the composite at 30% filler, while the microstructural study gave a hint of good interaction between the filler and the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hossain MF (2011) Effect of wood strength on the properties of wood saw dust reinforced polymer matrix composites. Bangladesh University of Engineering and Technology (BUET), Dhaka

    Google Scholar 

  2. Cerruti P, Fedi F, Avolio R, Gentile G, Carfagna C, Persico P, Errico ME, Malinconico M, Avella M (2014) Up-cycling end-of-use materials: highly filled thermoplastic composites obtained by loading waste carbon fiber composite into fluidified recycled polystyrene. Polym Compos 35(8):1621–1628. https://doi.org/10.1002/pc.22815

    Article  CAS  Google Scholar 

  3. Mishra A (2014) Frictional characterization of teak wood dust-filled epoxy composites. Adv Prod Eng Manag 9(3):111–118

    Google Scholar 

  4. Arpitha G, Yogesha B (2017) An overview on mechanical property evaluation of natural fiber reinforced polymers. Mater Today: Proc 4(2):2755–2760

    Google Scholar 

  5. Trejo-O’reilly JA, Cavaillé JY, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Compos 21(1):65–71. https://doi.org/10.1002/pc.10165

    Article  CAS  Google Scholar 

  6. Sivaraj S, Elanchezhian C, Mk Kumar, Kumar AA (2017) Mechanical behavior of saw wood dust filled polymer composites. Int J Sci Eng Res (IJOSER) 5(5):3221–5687

    Google Scholar 

  7. Chindaprasirt P, Hiziroglu S, Waisurasingha C, Kasemsiri P (2015) Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant. Polym Compos 36(4):604–612. https://doi.org/10.1002/pc.22977

    Article  CAS  Google Scholar 

  8. Eskander SB, Tawfik ME (2019) Impacts of gamma irradiation on the properties of hardwood composite based on rice straw and recycled polystyrene foam wastes. Polym Compos 40(6):2284–2291. https://doi.org/10.1002/pc.25036

    Article  CAS  Google Scholar 

  9. Abdulkareem SA, Adeniyi AG (2017) Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk. Niger J Technol Dev 14(1):18–22

    Article  Google Scholar 

  10. Zhao Hanqing, Guo Y (2014) Composites. Tampere University of Applied Sciences

    Google Scholar 

  11. Jiang X, Ma P, Zhou C, Zhu W, You F, Yao C, Liu F (2020) Simultaneously enhancing the thermal conductivity and dielectric constant of BN/CF hybrid filled polypropylene/polystyrene composites via in situ reactive processing. Polym Compos 41(4):1234–1241. https://doi.org/10.1002/pc.25449

    Article  CAS  Google Scholar 

  12. Ahmed Jadah Farhan Al-Omairi (2011) Investigation of some mechanical properties of sawdust and chopped reeds/UPE composites. M. Sc. Thesis. Department of physics. University of Baghdad 7

  13. Simonsen J, Rials TG (1996) Morphology and properties of wood-fiber reinforced blends of recycled polystyrene and polyethylene. J Thermoplast Compos Mater 9(3):292–302

    Article  CAS  Google Scholar 

  14. Selke SEW (2004) Wood fibre/polyolefin composites. Compos Part A: Appl Sci Manuf 35:321–326

    Article  Google Scholar 

  15. Maul J, Frushour BG, Kontoff JR, Eichenauer H, Ott K-H, Schade C (2007) Polystyrene and Styrene Copolymers. In: Ullmann's encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.a21_615.pub2

  16. Brydson JA (1999) Plastic materials,. ISBN, 978-0-7506-4132-6, Butterworth-Heinemann, 1–920

  17. Abhijit B, Chandra BG (2007) Studies on photcatalytic degradation of polystyrene. Mater Sci Technol 23:307–317

    Article  Google Scholar 

  18. Bankoti H, Kumar G, Chandra D, Saxena A (2017) Optimization of tensile and flexural stress of epoxy based walnut reinforced composite using taguchi method. Int J Emerg Technol 8(2249–3255):758–763

    CAS  Google Scholar 

  19. Singh JIP, Dhawan V, Singh S, Jangid K (2017) Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Mater Today: Proc 4(2):2793–2799

    Google Scholar 

  20. Hemachandran R, Pugazhvadivu M, Jayabal S (2016) Optimization of tensile and impact behaviours of randomly oriented short sisal fiber reinforced epoxy composites using response surface methodology. Int J Chem Tech Res 9(7):660

    CAS  Google Scholar 

  21. Abdulkareem S, Raji S, Adeniyi A (2017) Development of particleboard from waste styrofoam and sawdust. Niger J Technol Dev 14(1):18–22. https://doi.org/10.4314/njtd.v14i1.3

    Article  Google Scholar 

  22. Abdulkareem SA, Amosa MK, Adeniyi AG, Adeoye SA, Ajayi AK (2019) Development of natural fibre reinforced polystyrene (NFRP) composites: impact resistance study. IOP Conf Ser: Mater Sci Eng 640:012059. https://doi.org/10.1088/1757-899x/640/1/012059

    Article  CAS  Google Scholar 

  23. Abdulkareem SA, Raji SA, Adeniyi AG (2017) Development of particleboard from waste styrofoam and sawdust. Niger J Technol Dev 14(1):18

    Article  Google Scholar 

  24. ASTM (1999) Standard test methods for evaluating properties of wood-based fiber and particle panel materials static tests of timbers. D 1037- 93, ASTM, Philadelphia, PA

  25. International Organization for Standardization (1993) Plastics—Determination of Izod Impact Strength (ISO 180:1993); International Organization for Standardization: Geneva, Switzerland

  26. ASTM D256–10 (2018) Standard test methods for determining the Izod Pendulum impact resistance of plastics international: west conshohocken, PA, USA, 2018

  27. Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Compos B Eng 176:107305. https://doi.org/10.1016/j.compositesb.2019.107305

    Article  CAS  Google Scholar 

  28. Adeniyi AG, Ighalo JO, Onifade DV (2019) Banana and plantain fiber-reinforced polymer composites. J Polym Eng 39(7):597. https://doi.org/10.1515/polyeng-2019-0085

    Article  CAS  Google Scholar 

  29. Abass RU (2015) Mechanical behavior of natural material (Orange peel) reinforced polyester composite. Int J Eng Sci Res 4(3)

  30. Adeniyi AG, Onifade DV, Abdulkareem SA, Amosa MK, Ighalo JO (2020) Valorization of plantain stalk and polystyrene wastes for composite development. J Polym Environ 28(10):2644–2651. https://doi.org/10.1007/s10924-020-01796-7

    Article  CAS  Google Scholar 

  31. Adeniyi AG, Onifade DV, Ighalo JO, Abdulkareem SA, Amosa MK (2020) Extraction and characterization of natural fibres from plantain (Musa paradisiaca) stalk wastes. Iran (Iranica) J Energy Environ 11(2):116–121. https://doi.org/10.5829/ijee.2020.11.02.04

    Article  CAS  Google Scholar 

  32. Maldas D, Kokta BV (1990) Effect of recycling on the mechanical properties of wood fiber–polystyrene composites. Part I: chemithermomechanical pulp as a reinforcing filler. Polym Compos 11(2):77–83. https://doi.org/10.1002/pc.750110202

    Article  CAS  Google Scholar 

  33. Adeniyi AG, Abdulkareem SA, Ighalo JO, Onifade DV, Adeoye SA, Sampson AE (2020) Morphological and thermal properties of polystyrene composite reinforced with biochar from elephant grass (Pennisetum purpureum). J Thermoplast Compos Mater. https://doi.org/10.1177/0892705720939169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adewale George Adeniyi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Human or animal rights

This article does not contain any studies involving human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.G., Abdulkareem, S.A., Adeoye, S.A. et al. Preparation and properties of wood dust (isoberlinia doka) reinforced polystyrene composites. Polym. Bull. 79, 4361–4379 (2022). https://doi.org/10.1007/s00289-021-03718-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03718-6

Keywords

Navigation