Skip to main content
Log in

Damping properties of expanded graphite filled fluorinated polyacrylate composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The damping properties of fluorinated polyacrylate (FPA) composites with expanded graphite (EG) partially substituted for mica as fillers have been studied. EG was prepared by a rapid expansion method by microwave (MW) irradiation. The effects of the EG and natural graphite (NG) as partial substitutions for mica and the blending of epoxy (EP) resin with the polyacrylate emulsion on the damping performance of the composites was investigated with dynamic mechanical analysis (DMA). The results showed that adding EG as a partial substitute for the mica improved the intensity of the loss peak of the DMA tanδ and broadened the corresponding high loss factor (tanδ > 0.3) temperature range of the PA/EP composites. In comparison with NG or the mica, EG was more efficient in improving the damping properties of the composites. When the weight content of EP was 4% and EG was 6%, tanδ reached the maximum value of 2.16, and the corresponding temperature range with tanδ > 0.3 was about 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arafa M, Baz B (2000) Energy-dissipation characteristics of active piezoelectric damping composites. Compos Sci Tech 60:2759–2768

    Article  Google Scholar 

  2. Corsaro RD, Sperling LH (eds) Sound and Vibration Damping with Polymers, ACS Symposium Series No. 424, American Chemical Society, Washington, DC, 1990

  3. Öborn J, Bertilsson H, Rigdahl M (1999) Damping properties of a mica-filled Latex IPN structure and applications in constrained-layer damping. Sci Eng Compos Mater 8(6):327–342

    Article  Google Scholar 

  4. Aouni NE, Hsissou R, Azzaoui JE, Bouchti ME, Elharfi A (2020) Synthesis rheological and thermal studies of epoxy polymer and its composite. Chem Data Collect 30:12. https://doi.org/10.1016/j.cdc.2020.100584

    Article  CAS  Google Scholar 

  5. Hsissou R, Bekhta A, Dagdag O, Bachiri AE, Rafik M, Elharfi A (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04187

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A (2021) Polymer composite materials: a comprehensive review. Compos Struct 262:4. https://doi.org/10.1016/j.compstruct.2021.113640

    Article  CAS  Google Scholar 

  7. Aouni NE, Hsissou R, Azzaoui JE, Bouchti ME, Elbachiri A, Elharfi A, Rafik M (2021) One-pot synthesis of trifunctional epoxy resin and its nanocomposite: investigation of thermal and rheological properties. Biointerface Res Appl Chem 11(4):12403–12413

    Article  Google Scholar 

  8. Hsissou R, Elharfi A (2020) Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN), (HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J King Saud Uni Sci 32:235–244

    Article  Google Scholar 

  9. Botelho EC, Pardini LC, Rezende MC (2007) Damping behavior of hygrothermally conditioned carbon fiber/epoxy laminates. J Appl Polym Sci 106:3143–3148

    Article  CAS  Google Scholar 

  10. Ogawa T, Koen T, Mukohyama Y, Inoue SJ (1992) Soc Mater Sci Jpn 41:1569–1573

    Article  CAS  Google Scholar 

  11. Beniah G, Liu K, Heath WH, Miller MD, Scheidt KA, Torkelson JM (2016) Novel thermoplastic polyhydroxyurethane elastomers as effective damping materials over broad temperature ranges. Eur Polymer J 84:770–778

    Article  CAS  Google Scholar 

  12. Yamada N, Shoji S, Sasaki A, Nagatani A, Yamaguchi K, Kohjiya S, Hashim AS (1999) Developments of high performance vibration absorber from poly(vinyl chloride)/chlorinated polyethylene/epoxidized natural rubber blend. J Appl Polym Sci 71:855–863

    Article  CAS  Google Scholar 

  13. Qin CL, Cai WM, Cai J, Tang DY, Zhang JS, Qin M (2004) Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network. Mater Chem Phys 85:402–409

    Article  CAS  Google Scholar 

  14. Zheng W, Wong SC, Sue HJ (2002) Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 43:6767–6773

    Article  CAS  Google Scholar 

  15. Du XS, Xiao M, Meng YZ, Hay AS (2004) Synthesis and properties of poly(4,4′-oxybis(benzene)disulfide)/graphite nanocomposites via in situ ring-opening polymerization of macrocyclic oligomers. Polymer 45:6713–6718

    Article  CAS  Google Scholar 

  16. Chen GH, Weng WG, Wu DJ, Wu CL (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335

    Article  CAS  Google Scholar 

  17. Shen JW, Chen XM, Huang WY (2003) Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation. J Appl Polym Sci 88:1864–1869

    Article  CAS  Google Scholar 

  18. Uhl Fawn M, Qiang Y, Hiroyoshi N, Manias E, Wilkie CA (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stabil 89:70–84

    Article  Google Scholar 

  19. Pan YX, Yu ZZ, Ou YC, Hu GH (2000) A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J Polym Sci, Part B: Polym Phys 38:1626–1633

    Article  CAS  Google Scholar 

  20. Weng WG, Chen GH, Wu DJ, Chen XG, Lu JR, Wang PP (2004) Fabrication and characterization of nylon 6/foliated graphite electrically conducting nanocomposite. J Polym Sci Part B: Polym Phys 42:2844–2856

    Article  CAS  Google Scholar 

  21. Xiao M, Sun LY, Liu JJ, Li Y, Gong KC (2002) Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 43:2245–2248

    Article  CAS  Google Scholar 

  22. Chen GH, Wu DJ, Weng WG, Yan WL (2001) Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci 82:2506–2513

    Article  CAS  Google Scholar 

  23. Du XS, Xiao M, Meng YZ, Hay AS (2004) Novel synthesis of conductive poly(arylene disulfide)/graphite nanocomposite. Synth Met 143:129–132

    Article  CAS  Google Scholar 

  24. Song LN, Du XS, Xiao M, Meng YZ (2005) Short carbon fiber reinforced aromatic polydisulfide derived from cyclic (4,4′-oxybis(benzene)disulfide) via ring-opening polymerization. Polym Adv Technol 16:323–327

    Article  CAS  Google Scholar 

  25. Song LN, Xiao M, Li XH, Meng YZ (2005) Short carbon fiber reinforced electrically conductive aromatic polydisulfide/expanded graphite nanocomposites. Mater Chem Phys 93:122–128

    Article  CAS  Google Scholar 

  26. British Standard European Standard, BS EN ISO 28439–2011, this British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2011

  27. Standard Test Method for Surface Wettability and Absorbency of Sheeted Materials Using an Automated Contact Angle Tester, ASTM D5725–1999(2003), ASTM, 1999

  28. Linemann RF, Malner TE, Brandsch R et al (1999) Latex blends of fluorinated and fluorine-free acrylates: emulsion polymerization and tapping mode atomic force microscopy of film formation. Macromolecules 32:1715–1721

    Article  CAS  Google Scholar 

  29. Lyengar DR, Perutz SM, Daic A et al (1996) Surface segregation studies of fluorine- containing diblock copolymer. Macromolecules 29:1229–1234

    Article  Google Scholar 

  30. Yak S (1994) In advances in interpenetrating polymer networks. In: Vol IV, Klempner D, Frisch KC (eds) Technomic Publishing Company. Lancaster, Pennsylvania

    Google Scholar 

  31. Guo M (2002) Dynamic mechanical thermal analysis of polymer composites. Chemical Industry Press, Beijing, pp 18–74

    Google Scholar 

  32. Wu GH, Gu J, Zhao X (2007) Preparation and dynamic mechanical properties of polyurethane-modified epoxy composites filled with functionalized fly ash particulates. J Appl Polym Sci 105:1118–1126

    Article  CAS  Google Scholar 

  33. Wang YB, Zhan MM, Li Y et al (2012) Mechanical and damping properties of glass fiber and mica-reinforced epoxy composites. Polym-Plastics Tech and Eng 51:840–844

    Article  CAS  Google Scholar 

  34. Oborn J, Bertilsson H, Rigdahl M (1999) Damping properties of a mica-filled latex IPN structure and applications in constrained-layer damping. Sci Eng Compos Mater 8:327–342

    Article  CAS  Google Scholar 

  35. Hummers Jr William S, Offeman Richard E (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  Google Scholar 

  36. Wang TM, Chen SB, Wang QH, Pei XQ (2010) Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead. Mater Des 31:3810–3815

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the Key Project of Fujian Science and Technology Department (No. 2019H0032); Sanming Fluorine Chemical Industry Technology Research Institute supported Project (No. KH190048) and College Students' Innovation Plan Project (No. 202011311014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Shen, Z., Li, J. et al. Damping properties of expanded graphite filled fluorinated polyacrylate composites. Polym. Bull. 79, 4745–4759 (2022). https://doi.org/10.1007/s00289-021-03711-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03711-z

Keywords

Navigation