Skip to main content
Log in

Synthesis and characterization of semi-alicyclic poly(amic acid) varnishes via bis-spironobornane dianhydride and the derived polyimide alignment layers for potential applications in TFT-LCDs

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of semi-alicyclic poly(amic acid) varnishes designed for potential applications as the alignment layers for thin-film transistor driven liquid crystal display devices (TFT-LCDs) were prepared from an alicyclic dianhydride, norbornane-2-spiro-α- cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) and aromatic diamines. Then, the liquid crystal (LC) minicells were fabricated by using the polyimide (PI) as the alignment layers, which were prepared by thermally dehydrating the PAA varnishes at elevated temperatures. The derived PI alignment layers exhibited good thermal stability with the 5% weight loss temperatures higher than 470 °C. In addition, the PI layers showed excellent optical transparency with the transmittances higher than 94.0% at the wavelength of 550 nm with a thickness around 100 nm. The LC cells fabricated with the CpODA-PI alignment layers exhibited good optoelectronic features. The rubbing PI layers could induce the effective alignment of the LC molecules with the pretilt angles in the range of 1.62–2.14°. The voltage holding ratios of the LC cells were higher than 92.00%, and the residual direct voltage values were all lower than 300 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chigrinov VG (2020) Liquid crystal materials and devices for displays and photonics. SID Int Symp Digest Tech Papers 51:762–764. https://doi.org/10.32362/2410-6593-2020-15-2-7-20

    Article  CAS  Google Scholar 

  2. Chen HW, Lee JH, Lin BY, Chen S, Wu ST (2018) Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci Appl 7:17168–17168. https://doi.org/10.1038/lsa.2017.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kondo K, Matsuyama S, Konishi N, Kawakami H (1998) Materials and components optimization for IPS TFT-LCDs. SID Int Symp Digest Tech Papers 29:389–392. https://doi.org/10.1889/1.1833774

    Article  Google Scholar 

  4. Kim YJ, Hwang YT, Rho KL, Nam IH, Choi S, Cho SC, Oh WS (2008) The molecular orientation of polyimide alignment layer used in TFT-LCDs with NEXAFS study. SID Symp Digest Tech Papers 39:393–396. https://doi.org/10.1889/1.3069679

    Article  CAS  Google Scholar 

  5. Ishihara S, Mizusaki M (2020) Alignment control technology of liquid crystal molecules. J Soc Inform Disp 28:44–74. https://doi.org/10.1002/jsid.825

    Article  CAS  Google Scholar 

  6. Park HJ, Lee JH, Lee SB, Kwak CH, Park SR, Lee JH, Jun MC, Kanget IB (2018) Advanced photo-alignment material for both photo and rubbing-alignment methods. SID Symp Digest Tech Papers 49:372–374. https://doi.org/10.1002/sdtp.12575

    Article  CAS  Google Scholar 

  7. Lee SW, Park SY, Shin DM (2015) Synthesis and photo-alignment properties of novel polyimides with cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDA). Mol Cryst Liq Cryst 620:159–165. https://doi.org/10.1080/15421406.2015.1095440

    Article  CAS  Google Scholar 

  8. Chiou DR, Chen LJ, Lee CD (2006) Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method. Langmuir 22:9403–9408. https://doi.org/10.1021/la061875f

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Sang J, Liu H, Xu H, Zhao S, Sun J, Lee JH, Jeong HC, Seo DS (2019) Decreasing the residual DC voltage by neutralizing the charged mobile ions in liquid crystals. Curr Comput-Aided Drug Des 9:181. https://doi.org/10.3390/cryst9040181

    Article  CAS  Google Scholar 

  10. Jeon YJ, Hwang JY, Seo DS, Kim HY (2004) Voltage holding ratio and residual DC property of the IPS-LCD on rubbed polymer layers by voltage-transmittance hysteresis method. Mol Cryst Liq Cryst 410:369–380. https://doi.org/10.1080/15421400490433325

    Article  CAS  Google Scholar 

  11. Choi N, Jung J, Cheong B, Yoon H, Hong M (2018) Reduction of residual DC voltage via RC matching in LCD. Mater Res Exp 5:126305. https://doi.org/10.1088/2053-1591/aae1b7

    Article  CAS  Google Scholar 

  12. Chen PA, Yang KH (2018) Ionic effects on electro-optics and residual direct current voltages of twisted nematic liquid crystal cells. Liq Cryst 45:1032–1039. https://doi.org/10.1080/02678292.2017.1404154

    Article  CAS  Google Scholar 

  13. Lu L, Huang Y, Zhang K, Liu N, Tweig RJ, Auman B, Bhowmik A, Bos P (2011) Reduced residual DC voltages in LCDs by using fluorinated polyimides. J Soc Inform Disp 19:447–452. https://doi.org/10.1889/JSID19.6.447

    Article  CAS  Google Scholar 

  14. Lu L, Huang Y, Zhang K, Tweig R, Bos P, Auman B, Bhowmik A (2010) The use of fluorinated alignment layers to reduce image retention in liquid crystal displays. SID Int Symp Digest Tech Papers 41:583–586. https://doi.org/10.1889/1.3500534

    Article  CAS  Google Scholar 

  15. Song Y, Yuan L, Wang Z, Yang S (2019) Photo-aligning of polyimide layers for liquid crystals. Polym Adv Technol 30:1243–1250. https://doi.org/10.1002/pat.4557

    Article  CAS  Google Scholar 

  16. Tsutsui K, Sakai T, Goto K, Sawahata K, Ishikawa M, Fukuro H (2003) An image sticking-free novel alignment material for IPS-LCD. SID Symp Digest Tech Papers 34:1166–1169. https://doi.org/10.1889/1.1832495

    Article  CAS  Google Scholar 

  17. Lee TR, Kim JH, Lee SH, Jun MC, Baik HK (2017) Investigation on newly designed low resistivity polyimide-type alignment layer for reducing DC image sticking of in-plane switching liquid crystal display. Liq Cryst 44:738–747. https://doi.org/10.1080/02678292.2016.1239775

    Article  CAS  Google Scholar 

  18. Kim TY, Kim WJ, Lee TH, Kim JE, Suh KS (2007) Electrical conduction of polyimide films prepared from polyamic acid (PAA) and pre-imidized polyimide (PI) solution. Express Polym Lett 1:427–432. https://doi.org/10.3144/expresspolymlett.2007.60

    Article  CAS  Google Scholar 

  19. Ahn HJ, Kwak CH, Park HJ, Lee JH, Jun MC, Kang IB (2017) Phase separation of photo-aligned polyimide blends for robust reliability. SID Int Symp Digest Tech Papers 48:582–584. https://doi.org/10.1002/sdtp.11700

    Article  CAS  Google Scholar 

  20. Sato T, Sawahata K, Endo H, Fukuro H (1998) Influence of polyamide structures on electrical properties of active-matrix liquid-crystal cells. SID Int Symp Digest Tech Papers 29:738–741. https://doi.org/10.1889/1.1833866

    Article  Google Scholar 

  21. Fukuro H, Sawahata K, Sato T, Endo H (2000) Optimal alignment materials and technologies for various LCDs. SID Int Symp Digest Tech Papers 31:434–437. https://doi.org/10.11485/itetr.24.42.0_9_1

    Article  CAS  Google Scholar 

  22. Bi HS, Zhi XX, Wu PH, Zhang Y, Wu L, Tan YY, Jia YJ, Liu JG, Zhang XM (2020) Preparation and characterization of semi-alicyclic polyimide resins and the derived alignment layers for liquid crystal display technology. Polymers 12:217. https://doi.org/10.3390/polym12010217

    Article  CAS  PubMed Central  Google Scholar 

  23. Zhi XX, Bi HS, Gao YS, Liu JG, Chen J, Gao KY, Zhang XM (2019) Preparation and characterization of novel preimidized semi-alicyclic polyimide alignment layers with low curing temperature and high voltage holding ratio for TFT-LCDs. Chem Lett 48:654–657. https://doi.org/10.1246/cl.190117

    Article  CAS  Google Scholar 

  24. Zhi XX, Bi HS, Liu JG, Gao YS, Zhang YL, Zhou YC, Zhang Y, Wu X, Zhang XM (2019) Synthesis and characterization of soluble ester-containing polyimide alignment layers with high voltage holding ratio features and potential applications in TFT-LCDs. Express Polym Lett 13:923–936. https://doi.org/10.3144/expresspolymlett.2019.80

    Article  CAS  Google Scholar 

  25. Zhang Y, Tan Y, Liu J, Zhi X, Huangfu M, Jiang G, Wu X, Zhang X (2019) Molecular design, synthesis and characterization of intrinsically black polyimide films with high thermal stability and good electrical properties. J Polym Res 26:1–10. https://doi.org/10.1007/s10965-019-1835-0

    Article  CAS  Google Scholar 

  26. Faghihi K (2008) New optically active poly(amide-imide)s based on N, N′-(pyromellitoyl)-bis-L-amino acid and 1,3-bis(4-aminophenoxy)propane: Synthesis and characterization. J Appl Polym Sci 109:74–81. https://doi.org/10.1002/app.27675

    Article  CAS  Google Scholar 

  27. Kulszewicz-Bajer I, Różalska I, Kuryłek M (2004) Synthesis and spectroscopic properties of aniline tetramers. Comparative studies New J Chem 28:669–675. https://doi.org/10.1039/B311096F

    Article  CAS  Google Scholar 

  28. Lee TR, Kim JH, Lee SH, Lee JMC, Baik HK (2017) Suppressing pretilt angle for enhancing black quality in diagonal viewing angle of homogenously aligned liquid crystal display. Liq Cryst 44:1146–1156. https://doi.org/10.1080/02678292.2016.1269370

    Article  CAS  Google Scholar 

  29. Tsuda Y, Oh JM, Kuwahara R (2009) Dendronized polyimides bearing long-chain alkyl groups and their application for vertically aligned nematic liquid crystal displays. Int J Mol Sci 10:5031–5053. https://doi.org/10.3390/ijms10115031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gong Q, Gong S, Zhang H, Liu L, Wang Y (2015) Synthesis of a novel polyimide used as liquid crystal vertical alignment layers. RSC Adv 5:57245–57253. https://doi.org/10.1039/C5RA08521G

    Article  CAS  Google Scholar 

  31. Lee YJ, Choi JG, Song I, Oh JM, Yi MH (2006) Effect of side chain structure of polyimides on a pretilt angle of liquid crystal cells. Polymer 47:1555–1562. https://doi.org/10.1016/j.polymer.2006.01.001

    Article  CAS  Google Scholar 

  32. Matsumoto T, Ozawa H, Mizuta T, Komatsu S (2017) Thermal durability improvement in transparency of alicyclic polyimide by capping terminal amino groups. J Photopolym Sci Technol 30:133–137. https://doi.org/10.2494/photopolymer.30.133

    Article  CAS  Google Scholar 

  33. Matsumoto T, Ozawa H, Ishiguro E, Komatsu S (2016) Properties of alicyclic polyimides with bis-spironorbornane structure prepared in various solvents. J Photopolym Sci Technol 29:237–242. https://doi.org/10.2494/photopolymer.29.237

    Article  CAS  Google Scholar 

  34. Matsumoto T, Ishiguro E, Komatsu S (2014) Low temperature film-fabrication of hardly soluble alicyclic polyimides with high Tg by a combined chemical and thermal imidization method. J Photopolym Sci Technol 27:167–171. https://doi.org/10.2494/photopolymer.27.167

    Article  Google Scholar 

  35. Matsumoto T, Ishiguro E, Nakagawa S, Kimura R (2013) Alicyclic polyimides derived from alkanone bis-spironorbornanetetracarboxylic dianhydrides. J Photopolym Sci Technol 26:361–365. https://doi.org/10.2494/photopolymer.26.361

    Article  CAS  Google Scholar 

  36. Nishikawa M (2000) Design of polyimides for liquid crystal alignment films. Polym Adv Technol 11:404–412. https://doi.org/10.1002/1099-1581(200008/12)11:8/12%3c404::AID-PAT41%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  37. Huang Y, Bhowmik A, Bos P (2010) Comparison of organic and inorganic alignment layers for low-power liquid-crystal devices using low-frequency applied-voltage waveforms. J Soc Inform Disp 18:206–210. https://doi.org/10.1889/JSID18.3.206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shandong Key Research and Development Program (No. 2019JZZY020235).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-gang Liu or Yan-gai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, Xx., Qi, Hr., Wu, H. et al. Synthesis and characterization of semi-alicyclic poly(amic acid) varnishes via bis-spironobornane dianhydride and the derived polyimide alignment layers for potential applications in TFT-LCDs. Polym. Bull. 79, 4251–4268 (2022). https://doi.org/10.1007/s00289-021-03710-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03710-0

Keywords

Navigation