Skip to main content
Log in

The bilayer skin substitute based on human adipose-derived mesenchymal stem cells and neonate keratinocytes on the 3D nanofibrous PCL-platelet gel scaffold

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, neonate keratinocytes were cocultured with human adipose-derived mesenchymal stem cells (hAMSCs) on the electrospun polycaprolactone-platelet gel (PCL–PG) scaffold. To evaluate its potential of wound healing and skin tissue engineering, neonate keratinocytes must be differentiated. The PCL scaffold prepared by the electrospinning technique was fabricated and coated by PG. Then scaffolds were fully characterized by SEM, contact angle, FTIR–ATR, and tensile test. Following seeding hAMSCs as a feeder layer, neonate keratinocytes were cocultured directly on PCL–PG scaffolds and neat PCL. The hAMSCs and neonate keratinocytes' viability was measured using MTT assay for up to 10 days (1st, 3rd, 5th, 7th, and 10th days). To examine the epidermal maturation, cytokeratin 10 and loricrin determinants detection was used through immunocytochemistry (ICC). In addition, real-time PCR was used to examine keratinocyte marker genes in keratin 10, keratin 14, and Involucrin. The MTT assay results showed higher cell viability and the proliferation of neo-keratinocytes on PCL–PG fibrillar scaffolds than the PCL scaffold. On the PCL–PG scaffolds in the presence of hAMSCs as a feeder layer, the PCR and ICC analysis had a higher cell differentiation compared to neat PCL scaffolds. Moreover, SEM images showed that the keratinocytes cocultured with hAMSCs demonstrated a better proliferation and adhesion on PCL–PG nanofiber scaffolds. Based on results, PG increased the nanofibrous PCL scaffold's biological properties, including hydrophilicity, cell attachment, cell viability, and expression of keratinocyte markers in the neat keratinocytes and hAMSCs coculture system. The findings support the potential of this engineered construct for engineering skin tissue and wound dressing.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data sets supporting the results of this article are included in the article.

Abbreviations

hAMSCs:

Human adipose-derived mesenchymal stem cells

neo-K:

Neonate Keratinocytes

PCL:

Polycaprolactone

PG:

Platelet gel

SEM:

Scanning electron microscope

FTIR-ATR:

Fourier transform infrared Spectroscopy-Attenuated total reflection

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

ICC:

Immunocytochemistry

PCR:

Polymerase chain reaction

3D:

Three dimensional

References

  1. Golchin A, Hosseinzadeh S, Jouybar A et al (2020) Wound healing improvement by curcumin-loaded electrospun nanofibers and BFP-MSCs as a bioactive dressing. Polym Adv Technol. https://doi.org/10.1002/pat.4881

    Article  Google Scholar 

  2. Papini R (2004) Management of burn injuries of various depths. BMJ 329:158–160. https://doi.org/10.1136/bmj.329.7458.158

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jayarama Reddy V, Radhakrishnan S, Ravichandran R et al (2013) Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen 21:1–16

    Article  Google Scholar 

  4. Golchin A, Farahany TZ (2019) Biological products: cellular therapy and FDA approved products. Stem Cell Rev Rep 15:1–10. https://doi.org/10.1007/s12015-018-9866-1

    Article  Google Scholar 

  5. Golchin A, Hosseinzadeh S, Staji M et al (2019) Biological behavior of the curcumin incorporated chitosan/poly(vinyl alcohol) nanofibers for biomedical applications. J Cell Biochem. https://doi.org/10.1002/jcb.28808

    Article  PubMed  Google Scholar 

  6. Mavis B, Demirtaş TT, Gümüşderelioǧlu M et al (2009) Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater 5:3098–3111. https://doi.org/10.1016/j.actbio.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  7. Chen VJ, Ma PX (2004) Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25:2065–2073. https://doi.org/10.1016/j.biomaterials.2003.08.058

    Article  CAS  PubMed  Google Scholar 

  8. Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99:5133–5138. https://doi.org/10.1073/pnas.072699999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu Y, Leong MF, Ong WF et al (2007) Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28:861–868. https://doi.org/10.1016/j.biomaterials.2006.09.051

    Article  CAS  PubMed  Google Scholar 

  10. Nemati S, Jeong KS, Shin YM, Shin H (2019) Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg 6:1–16

    Article  CAS  Google Scholar 

  11. Gizaw M, Faglie A, Pieper M et al (2019) The role of electrospun fiber scaffolds in stem cell therapy for skin tissue regeneration. Med One. https://doi.org/10.20900/mo.20190002

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim HS, Sun X, Lee JH et al (2019) Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 146:209–239

    Article  CAS  Google Scholar 

  13. Golchin A, Nourani MR (2020) Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full-thickness wound healing. Polym Adv Technol 31:2443–2452. https://doi.org/10.1002/pat.4960

    Article  CAS  Google Scholar 

  14. Yildirimer L, Thanh NTK, Seifalian AM (2012) Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol 30:638–648. https://doi.org/10.1016/j.tibtech.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  15. Golchin A, Hosseinzadeh S, Jouybar A et al (2020) Wound healing improvement by curcumin-loaded electrospun nanofibers and BFP-MSCs as a bioactive dressing. Polym Adv Technol. https://doi.org/10.1002/pat.4881

    Article  Google Scholar 

  16. Gunatillake PA, Adhikari R, Gadegaard N (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 5:1–16

    Article  CAS  Google Scholar 

  17. Woodfield TBF, Malda J, De Wijn J et al (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161. https://doi.org/10.1016/j.biomaterials.2003.10.056

    Article  CAS  PubMed  Google Scholar 

  18. Yol S, Tekin A, Yilmaz H et al (2008) Effects of platelet rich plasma on colonic anastomosis. J Surg Res 146:190–194

    Article  Google Scholar 

  19. James Woodall MTMTAMH, BHB (2008) Cellular effects of Platelet Rich Plasma: Interleukin-1 release from PRP treated macrophages. Biomed Sci Instrum 44:489–494

    Google Scholar 

  20. Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I et al (2016) Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006899.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rothe M, Falanga V (1989) Growth factors: their biology and promise in dermatologic diseases and tissue repair. Arch Dermatol 125:1390–1398. https://doi.org/10.1001/archderm.125.10.1390

    Article  CAS  PubMed  Google Scholar 

  22. Ting Yuan C-QZ 1 , M-JTS-CGB-FZ (2009) Autologous platelet-rich plasma enhances healing of chronic wounds - PubMed. Wounds 21:280–285

  23. Declair V (1999) The importance of growth factors in wound healing - PubMed. Ostomy Wound Manag 45:64–68

    CAS  Google Scholar 

  24. Erdag G, Sheridan RL (2004) Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns 30:322–328. https://doi.org/10.1016/j.burns.2003.12.007

    Article  PubMed  Google Scholar 

  25. El-Ghalbzouri A, Gibbs S, Lamme E et al (2002) Effect of fibroblasts on epidermal regeneration. Br J Dermatol 147:230–243. https://doi.org/10.1046/j.1365-2133.2002.04871.x

    Article  CAS  PubMed  Google Scholar 

  26. Golchin A, Farahany TZ, Khojasteh A et al (2018) The clinical trials of mesenchymal stem cell therapy in skin diseases: an update and concise review. Curr Stem Cell Res Ther 14:22–33. https://doi.org/10.2174/1574888x13666180913123424

    Article  CAS  Google Scholar 

  27. Aoki S, Toda S, Ando T, Sugihara H (2004) Bone marrow stromal cells, preadipocytes, and dermal fibroblasts promote epidermal regeneration in their distinctive fashions. Mol Biol Cell 15:4647–4657. https://doi.org/10.1091/mbc.E04-01-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maas-Szabowski N, Szabowski A, Stark HJ et al (2001) Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation. J Invest Dermatol 116:816–820. https://doi.org/10.1046/j.1523-1747.2001.01349.x

    Article  CAS  PubMed  Google Scholar 

  29. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. https://doi.org/10.1038/nature00870

    Article  CAS  PubMed  Google Scholar 

  30. Pivarcsi A, Kemény L, Dobozy A (2004) Innate immune functions of the keratinocytes: a review. Acta Microbiol Immunol Hung 51:303–310

    Article  CAS  Google Scholar 

  31. Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M (2018) Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. Artif Cells Nanomed Biotechnol 46:S943–S949. https://doi.org/10.1080/21691401.2018.1521816

    Article  CAS  PubMed  Google Scholar 

  32. Golchin A, Rekabgardan M, Taheri RA, Nourani MR (2018) Promotion of cell-based therapy: special focus on the cooperation of mesenchymal stem cell therapy and gene therapy for clinical trial studies. In: Turksen K (ed) Advances in experimental medicine and biology. Springer, New York, NY, pp 103–118

    Google Scholar 

  33. Havasi P, Nabioni M (2013) Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells. Mol Biol Rep. https://doi.org/10.1007/s11033-012-2376-3

    Article  PubMed  Google Scholar 

  34. Yang HS, Shin J, Bhang SH et al (2011) Enhanced skin wound healing by a sustained release of growth factors contained in platelet-rich plasma. Exp Mol Med 43:622–629. https://doi.org/10.3858/emm.2011.43.11.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeong SI, Jun ID, Choi MJ et al (2008) Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol Biosci 8:627–637. https://doi.org/10.1002/mabi.200800005

    Article  CAS  PubMed  Google Scholar 

  36. Ardeshirylajimi A, Soleimani M, Hosseinkhani S et al (2014) A comparative study of osteogenic differentiation human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells. Cell J 16:235–244

    PubMed  PubMed Central  Google Scholar 

  37. Gümüşderelioglu M, Dalkiranoǧlu S, Aydin RST, Çakmak S (2011) A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J Biomed Mater Res - Part A. https://doi.org/10.1002/jbm.a.33143

    Article  Google Scholar 

  38. Chang MC, Tanaka J (2002) FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 23:4811–4818. https://doi.org/10.1016/S0142-9612(02)00232-6

    Article  CAS  PubMed  Google Scholar 

  39. Sa C, Wc C, N S, et al (2007) An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater. https://doi.org/10.1088/1748-6041/2/2/013

    Article  Google Scholar 

  40. Mansur HS, Oréfice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer (Guildf) 45:7193–7202. https://doi.org/10.1016/j.polymer.2004.08.036

    Article  CAS  Google Scholar 

  41. Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces 60:137–157

    Article  CAS  Google Scholar 

  42. Tharakan S, Pontiggia L, Biedermann T et al (2010) Transglutaminases, involucrin, and loricrin as markers of epidermal differentiation in skin substitutes derived from human sweat gland cells. Pediatr Surg Int 26:71–77. https://doi.org/10.1007/s00383-009-2517-5

    Article  PubMed  Google Scholar 

  43. Duan H, Feng B, Guo X et al (2013) Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes. Int J Nanomed 8:2077–2084. https://doi.org/10.2147/IJN.S42384

    Article  CAS  Google Scholar 

  44. Zhang Y, Ouyang H, Chwee TL et al (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res - Part B Appl Biomater 72:156–165. https://doi.org/10.1002/jbm.b.30128

    Article  CAS  Google Scholar 

  45. Fréchette JP, Martineau I, Gagnon G (2005) Platelet-rich plasmas: Growth factor content and roles in wound healing. J Dent Res 84:434–439. https://doi.org/10.1177/154405910508400507

    Article  PubMed  Google Scholar 

  46. Carter CA, Jolly DG, Worden CE et al (2003) Platelet-rich plasma gel promotes differentiation and regeneration during equine wound healing. Exp Mol Pathol 74:244–255. https://doi.org/10.1016/S0014-4800(03)00017-0

    Article  CAS  PubMed  Google Scholar 

  47. Tayer HA, Sh A, Bateni HM, Tayer Akbar H (2012) Iran J Pediatr Hematol Oncol Vol. 2. No. 2

  48. Kliche S, Waltenberger J (2001) VEGF receptor signaling and endothelial function. IUBMB Life 52:61–66

    Article  CAS  Google Scholar 

  49. B C Adelmann-Grill FWZCRHTK, (1990) Chemotactic migration of normal dermal fibroblasts towards epidermal growth factor and its modulation by platelet-derived growth factor and transforming growth factor-beta - PubMed. Eur J Cell Biol 51:322–326

    Google Scholar 

  50. Andresen JL, Ehlers N (1998) Chemotaxis of human keratocytes is increased by platelet-derived growth factor-BB, epidermal growth factor, transforming growth factor-alpha, acidic fibroblast growth factor, insulin-like growth factor-I, and transforming growth factor-beta. Curr Eye Res 17:79–87. https://doi.org/10.1076/ceyr.17.1.79.5261

    Article  CAS  PubMed  Google Scholar 

  51. HOSGOOD G, (1993) Wound healing: the role of platelet-derived growth factor and transforming growth factor beta. Vet Surg 22:490–495. https://doi.org/10.1111/j.1532-950X.1993.tb00426.x

    Article  Google Scholar 

  52. Barrientos S, Stojadinovic O, Golinko MS et al (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  Google Scholar 

  53. Ranjbarvan P, Soleimani M, Samadi Kuchaksaraei A et al (2017) Skin regeneration stimulation: the role of PCL-platelet gel nanofibrous scaffold. Microsc Res Tech 80:495–503. https://doi.org/10.1002/jemt.22821

    Article  CAS  PubMed  Google Scholar 

  54. Solovieva A, Miroshnichenko S, Kovalskii A et al (2017) Immobilization of platelet-rich plasma onto COOH plasma-coated PCL nanofibers Boost viability and proliferation of human mesenchymal stem cells. Polymers (Basel) 9:736. https://doi.org/10.3390/polym9120736

    Article  CAS  Google Scholar 

  55. Chavez-Munoz C, Nguyen KT, Xu W et al (2013) Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: Engineering a stratified epidermis. PLoS One. https://doi.org/10.1371/journal.pone.0080587

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dos Odile Damour M (2014) Adipose-derived stem cells promote skin homeostasis and prevent its senescence in an in vitro skin model. J Stem Cell Res Ther. https://doi.org/10.4172/2157-7633.1000194

    Article  Google Scholar 

  57. Sugiyama H, Maeda K, Yamato M et al (2008) Human adipose tissue-derived mesenchymal stem cells as a novel feeder layer for epithelial cells. J Tissue Eng Regen Med 2:445–449. https://doi.org/10.1002/term.111

    Article  CAS  PubMed  Google Scholar 

  58. Tosca MC, Chlapanidas T, Galuzzi M et al (2015) Human adipose-derived stromal cells as a feeder layer to improve keratinocyte expansion for clinical applications. Tissue Eng Regen Med 12:249–258. https://doi.org/10.1007/s13770-015-0007-5

    Article  CAS  Google Scholar 

  59. Hejazian LB, Esmaeilzade B, Ghoroghi FM et al (2012) The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering. Iran Biomed J 16:193–201. https://doi.org/10.6091/ibj.1074.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues in the Stem Cell Technology Research Center, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

PR and AG: conception, performing, collecting data, data analyzing, and interpreting. All authors cooperated in manuscript writing and final approval of the manuscript.

Corresponding author

Correspondence to Ali Golchin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethics approval and consent to participate

The study protocol was approved by the Tehran University of Medical Sciences of Iran, and all procedures were performed following the guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbarvan, P., Golchin, A., Azari, A. et al. The bilayer skin substitute based on human adipose-derived mesenchymal stem cells and neonate keratinocytes on the 3D nanofibrous PCL-platelet gel scaffold. Polym. Bull. 79, 4013–4030 (2022). https://doi.org/10.1007/s00289-021-03702-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03702-0

Keywords

Navigation