Skip to main content
Log in

Preparation and characterization of gelatin base cross-linking aerogel and nanoclay aerogel for diltiazem drug delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this investigation, we decided to prepare efficient aerogel for loading and releasing drug in vitro situation. Here we introduced the synthesis of gelatin-based cross-linking poly vinyl acetate/acrylic acid aerogel and nanoclay aerogel, which synthesized by free radical condition and called gelatin-g-VA–AA (A) and gelating-VA–AA/MMT (B), respectively, and they were used them for drug delivery of diltiazem. The synthesized aerogels were completely identified by FTIR, TGA, DTG, SEM, TEM, XRD that showed nanocomposites size with about 40–70 nm, highly uniform porous surface and with high temperature stability. In addition, drug delivery activities of aerogels were tested in saline solution, temperature, the percentage of nanoclay and time effect. Moreover, pH sensitivity of aerogels was investigated for characterization of drug loading and drug releasing amounts at different pHs, distilled water and buffers to determine the best condition for each situation which results illustrated the universal buffer at pH 5 and 7 for drug loading and pH 7 and 10 for drug releasing had the least interaction with aerogels and nano-aerogel, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hughes GA (2017) Nanostructure-mediated drug delivery. In: Nanomedicine in cancer. Pan Stanford, pp 47–72

  2. Sahoo SK, Misra R, Parveen S (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In: Nanomedicine in cancer. Pan Stanford, pp 73–124

  3. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym 117:797–806

    Article  PubMed  Google Scholar 

  5. Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7(4):2607–2615

    Article  CAS  PubMed  Google Scholar 

  6. Bhuiyan M, Rahman M, Rahaman M, Shajahan M, Dafader N (2015) Improvement of swelling behaviour of poly (vinyl pyrrolidone) and acrylic acid blend hydrogel prepared by the application of gamma radiation. Org Chem Curr Res 4(138):2161–0401

    Google Scholar 

  7. Rafieian F, Hosseini M, Jonoobi M, Yu Q (2018) Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25(8):4695–4710

    Article  CAS  Google Scholar 

  8. Entezami AA, Massoumi B (2006) Artificial muscles, biosensors and drug delivery systems based on conducting polymers: a review. Iran Polym J 15(1):13–30

    CAS  Google Scholar 

  9. Guo H, Meador MAB, McCorkle LS, Scheiman DA, McCrone JD, Wilkewitz B (2016) Poly (maleic anhydride) cross-linked polyimide aerogels: synthesis and properties. RSC Adv 6(31):26055–26065

    Article  CAS  Google Scholar 

  10. Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    Article  CAS  Google Scholar 

  11. Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhanitabar A (2017) A promising porous polymer-nanoclay hydrogel nanocomposite as water reservoir material: synthesis and kinetic study. J Porous Mater 1–11

  12. Lee K-Y, Jung H, Mahadik D, Park H (2016) Characterization of mechanical property change in polymer aerogels depending on the ligand structure of acrylate monomer. J Microelectron Packag Soc 23(23):15–20

    Article  Google Scholar 

  13. Marandi GB, Mahdavinia GR, Ghafary S (2011) Collagen-g-poly (Sodium Acrylate-co-Acrylamide)/sodium montmorillonite superabsorbent nanocomposites: synthesis and swelling behavior. J Polym Res 18(6):1487–1499

    Article  Google Scholar 

  14. Azmi S, Razak SIA, Abdul Kadir MR, Iqbal N, Hassan R, Nayan NHM, Abdul Wahab AH, Shaharuddin S (2017) Reinforcement of poly (vinyl alcohol) hydrogel with halloysite nanotubes as potential biomedical materials. Soft Mater 15(1):45–54

    Article  CAS  Google Scholar 

  15. Noori S, Kokabi M, Hassan Z (2015) Nanoclay enhanced the mechanical properties of poly (vinyl alcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Proc Mater Sci 11:152–156

    Article  CAS  Google Scholar 

  16. Eleftheriadis GK, Filippousi M, Tsachouridou V, Darda M-A, Sygellou L, Kontopoulou I, Bouropoulos N, Steriotis T, Charalambopoulou G, Vizirianakis IS (2016) Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen. Int J Pharm 515(1–2):262–270

    Article  CAS  PubMed  Google Scholar 

  17. Huang X, Xu S, Zhong M, Wang J, Feng S, Shi R (2009) Modification of Na-bentonite by polycations for fabrication of amphoteric semi-IPN nanocomposite hydrogels. Appl Clay Sci 42(3–4):455–459

    Article  CAS  Google Scholar 

  18. Song L, Zhu M, Chen Y, Haraguchi K (2008) Temperature-and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks. Macromol Chem Phys 209(15):1564–1575

    Article  CAS  Google Scholar 

  19. Abdurrahmanoglu S, Can V, Okay O (2008) Equilibrium swelling behavior and elastic properties of polymer–clay nanocomposite hydrogels. J Appl Polym Sci 109(6):3714–3724

    Article  CAS  Google Scholar 

  20. Zhang Y-T, Zhi T-T, Zhang L, Huang H, Chen H-L (2009) Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite. Polymer 50(24):5693–5700

    Article  CAS  Google Scholar 

  21. Sirousazar M, Kokabi M, Hassan Z, Bahramian A (2011) Dehydration kinetics of polyvinyl alcohol nanocomposite hydrogels containing Na–montmorillonite nanoclay. Sci Iran 18(3):780–784

    CAS  Google Scholar 

  22. Kaşgöz H, Durmus A (2008) Dye removal by a novel hydrogel–clay nanocomposite with enhanced swelling properties. Polym Adv Technol 19(7):838–845

    Article  Google Scholar 

  23. Mahdavinia GR, Hasanpour J, Rahmani Z, Karami S, Etemadi H (2013) Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye. Cellulose 20(5):2591–2604

    Article  CAS  Google Scholar 

  24. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781

    Article  CAS  Google Scholar 

  25. Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly (vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22(8):1023–1033

    Article  CAS  PubMed  Google Scholar 

  26. Song F, Zhang L-M, Shi J-F, Li N-N (2010) Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles. Colloids Surf B 81(2):486–491

    Article  CAS  Google Scholar 

  27. Pourjavadi A, Ghasemzadeh H, Soleyman R (2007) Synthesis, characterization, and swelling behavior of alginate-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J Appl Polym Sci 105(5):2631–2639

    Article  CAS  Google Scholar 

  28. Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98(1):358–365

    Article  CAS  PubMed  Google Scholar 

  29. Madyan OA, Fan M, Feo L, Hui D (2016) Enhancing mechanical properties of clay aerogel composites: an overview. Compos B Eng 98:314–329

    Article  CAS  Google Scholar 

  30. Simón-Herrero C, Caminero-Huertas S, Romero A, Valverde JL, Sánchez-Silva L (2016) Effects of freeze-drying conditions on aerogel properties. J Mater Sci 51(19):8977–8985

    Article  Google Scholar 

  31. Sanjana N, Somashekhar C, Tamizh Mani T (2017) Formulation and evaluation of injectable in situ gelling matrix system of diltiazem hydrochloride for controlled drug release. World J Pharm Pharm Sci 981–995. https://doi.org/10.20959/wjpps20175-9110

  32. Hirschy R, Ackerbauer KA, Peksa GD, O’Donnell EP, DeMott JM (2019) Metoprolol vs. diltiazem in the acute management of atrial fibrillation in patients with heart failure with reduced ejection fraction. Am J Emerg Med 37(1):80–84

    Article  PubMed  Google Scholar 

  33. Bardajee GR, Pourjavadi A, Ghavami S, Soleyman R, Jafarpour F (2011) UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon. J Photochem Photobiol B 102(3):232–240

    Article  CAS  PubMed  Google Scholar 

  34. Britton HTS, Robinson RA (1931) CXCVIII.—Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1456–1462

  35. Sadeghi M, Hosseinzadeh H (2008) Synthesis of starch—Poly (sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23(4):381–404

    Article  CAS  Google Scholar 

  36. Brannon-Peppas L, Harland RS (1990) Absorbent polymer technology. Elsevier, Amsterdam

    Google Scholar 

  37. Sohail K, Khan IU, Shahzad Y, Hussain T, Ranjha NM (2014) pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: impact of material parameters on swelling and drug release. Braz J Pharm Sci 50(1):173–184

    Article  Google Scholar 

  38. Tripathi A, Parsons GN, Khan SA, Rojas OJ (2018) Synthesis of organic aerogels with tailorable morphology and strength by controlled solvent swelling following Hansen solubility. Sci Rep 8(1):2106

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439

    Article  CAS  PubMed  Google Scholar 

  40. Martins M, Barros AA, Quraishi S, Gurikov P, Raman S, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159

    Article  CAS  Google Scholar 

  41. Ishiduki K, Esumi K (1997) The effect of pH on adsorption of poly (acrylic acid) and poly (vinylpyrrolidone) on alumina from their binary mixtures. Langmuir 13(6):1587–1591

    Article  CAS  Google Scholar 

  42. Jovašević J, Dimitrijević S, Filipović J, Tomić S, Micić M, Suljovrujić E (2011) Swelling, mechanical and antimicrobial studies of Ag/P (HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Phys Polon 120(2):279–283

    Article  Google Scholar 

  43. Bandi S, Bell M, Schiraldi DA (2005) Temperature-responsive clay aerogel−polymer composites. Macromolecules 38(22):9216–9220

    Article  CAS  Google Scholar 

  44. Wang Y, He G, Li Z, Hua J, Wu M, Gong J, Zhang J, Li-tong B, Huang L (2018) Novel biological hydrogel: swelling behaviors study in salt solutions with different ionic valence number. Polymers 10(2):112

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Azad University of Arak-Iran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadeghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajikarimi, A., Sadeghi, M. Preparation and characterization of gelatin base cross-linking aerogel and nanoclay aerogel for diltiazem drug delivery. Polym. Bull. 79, 3987–4011 (2022). https://doi.org/10.1007/s00289-021-03696-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03696-9

Keywords

Navigation