Skip to main content
Log in

Preparation of novel poly(vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, novel phase-separated composite films based on poly(vinyl alcohol) (PVA) and chitosan lactate (CL) were prepared by the solvent casting method. The influence of varying concentrations of CL (2.5–10% w/w) on the physicochemical properties of the films was assessed. Bright-field micrographs showed the formation of phase-separated polymeric matrices of different architectures in the CL concentration range of 2.5 and 7.5 wt%. At 10 wt% of CL, a homogenous matrix of polymer blend was observed. The developed films demonstrated excellent shielding properties against UV and visible radiation. FTIR studies confirmed the presence of hydrogen bonding between the parent polymers, i.e., PVA and CL, of the films. The film containing 7.5 wt% CL exhibited the highest crystalline nature with little crystal imperfections as compared to the remaining films. Impedance spectroscopy confirmed the conductive nature of the prepared films. The thermograms revealed that the addition of CL strongly influenced the hydrophilic interactions between the functional groups of the polymer components and the water molecules. PVA/CL composite films showed a higher % release of ciprofloxacin HCl (CPH) as compared to the pristine PVA film. CPH-loaded films showed excellent antimicrobial efficacy against model organisms. Therefore, the novel PVA/CL phase-separated composite films can potentially be used as matrices for UV-shielding and drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yadav I, Rathnam VS, Yogalakshmi Y, Chakraborty S, Banerjee I, Anis A, Pal K (2017) Synthesis and characterization of polyvinyl alcohol-carboxymethyl tamarind gum based composite films. Carbohydr Polym 165:159–168. https://doi.org/10.1016/j.carbpol.2017.02.026

    Article  CAS  PubMed  Google Scholar 

  2. Nagam SP, Jyothi AN, Poojitha J, Aruna S, Nadendla R (2016) A comprehensive review on hydrogels. Int J Curr Pharm Res 8(1):19–23

    CAS  Google Scholar 

  3. Bashir S, Hina M, Iqbal J, Rajpar A, Mujtaba M, Alghamdi N, Wageh S, Ramesh K, Ramesh S (2020) Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers 12(11):2702. https://doi.org/10.3390/polym12112702

    Article  CAS  PubMed Central  Google Scholar 

  4. Dave PN, Gor A (2018) Natural polysaccharide-based hydrogels and nanomaterials: recent trends and their applications. In: Handbook of nanomaterials for industrial applications. Elsevier, pp 36–66. https://doi.org/10.1016/b978-0-12-813351-4.00003-1

  5. Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Nistor CL, Nitu S, Petcu C (2020) Hydrogel-clay nanocomposites as carriers for controlled release. Curr Med Chem 27(6):919–954. https://doi.org/10.2174/0929867325666180831151055

    Article  CAS  PubMed  Google Scholar 

  6. Patil SB, Inamdar SZ, Das KK, Akamanchi KG, Patil AV, Inamadar AC, Reddy KR, Raghu AV, Kulkarni RV (2020) Tailor-made electrically-responsive poly (acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: synthesis, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 56:101525. https://doi.org/10.1016/j.jddst.2020.101525

    Article  CAS  Google Scholar 

  7. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Soni SK, Kulkarni RV (2019) Novel biocompatible poly (acrylamide)-grafted-dextran hydrogels: synthesis, characterization and biomedical applications. J Microbiol Methods 159:200–210. https://doi.org/10.1016/j.mimet.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  8. Majee SB (2016) Emerging concepts in analysis and applications of hydrogels. BoD Books on Demand, Norderstedt

  9. Sri B, Ashok V, Arkendu C (2012) As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci 1(2):642–661

    Google Scholar 

  10. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Akamanchi KG, Inamadar AC, Das KK, Kulkarni RV (2020) Functionally tailored electro-sensitive poly (Acrylamide)-g-Pectin copolymer hydrogel for transdermal drug delivery application: synthesis, characterization, in-vitro and ex-vivo evaluation. Drug Deliv Lett 10(3):185–196. https://doi.org/10.2174/2210303110666200206114632

    Article  CAS  Google Scholar 

  11. Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM (2010) Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):35–47. https://doi.org/10.1002/wnan.59

    Article  CAS  PubMed  Google Scholar 

  12. Karki S, Kim H, Na S-J, Shin D, Jo K, Lee J (2016) Thin films as an emerging platform for drug delivery. Asian J Pharm Sci 11(5):559–574. https://doi.org/10.1016/j.ajps.2016.05.004

    Article  Google Scholar 

  13. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AAH, Mohamad AB, Al-Amiery AA (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20(12):22833–22847. https://doi.org/10.3390/molecules201219884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Carvalho FA, Bilck AP, Yamashita F, Mali S (2018) Baked foams based on cassava starch coated with polyvinyl alcohol with a higher degree of hydrolysis. J Polym Environ 26(4):1445–1452. https://doi.org/10.1007/s10924-017-1046-x

    Article  CAS  Google Scholar 

  15. Deshmukh K, Ahamed MB, Deshmukh R, Pasha SK, Bhagat P, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 27–128. https://doi.org/10.1016/B978-0-12-809261-3.00003-6

  16. Marrella A, Lagazzo A, Dellacasa E, Pasquini C, Finocchio E, Barberis F, Pastorino L, Giannoni P, Scaglione S (2018) 3D porous gelatin/PVA hydrogel as meniscus substitute using alginate micro-particles as porogens. Polymers 10(4):380. https://doi.org/10.3390/polym10040380

    Article  CAS  PubMed Central  Google Scholar 

  17. Jahan F, Mathad R, Farheen S (2016) Effect of mechanical strength on chitosan-pva blend through ionic crosslinking for food packaging application. Mater Today: Proc 3(10):3689–3696. https://doi.org/10.1016/j.matpr.2016.11.014

    Article  Google Scholar 

  18. Karimi A, Wan Daud WMA (2017) Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels: a review. Polym Compos 38(6):1086–1102. https://doi.org/10.1002/pc.23671

    Article  CAS  Google Scholar 

  19. Congdon T, Shaw P, Gibson MI (2015) Thermoresponsive, well-defined, poly(vinyl alcohol) co-polymers. Polym Chem 6(26):4749–4757. https://doi.org/10.1039/C5PY00775E

    Article  CAS  Google Scholar 

  20. Mitura S, Sionkowska A, Jaiswal A (2020) Biopolymers for hydrogels in cosmetics. J Mater Sci Mater Med 31(6):1–14. https://doi.org/10.1007/s10856-020-06390-w

    Article  CAS  Google Scholar 

  21. Caprarescu S, Miron AR, Purcar V, Radu AL, Sarbu A, Nicolae CA, Pascu M, Ion-Ebrasu D, Raditoiu V (2018) Treatment of crystal violet from synthetic solution using membranes doped with natural fruit extract. Clean (Weinh) 46(7):1700413. https://doi.org/10.1002/clen.201700413

    Article  CAS  Google Scholar 

  22. Caprarescu S, Miron AR, Purcar V, Radu AL, Sarbu A, Ianchis R, Erbasu DI (2017) Commercial gooseberry buds extract containing membrane for removal of methylene blue dye from synthetic wastewaters. Rev Chim (Bucharest). 68: 1757–1762. https://doi.org/https://doi.org/10.37358/RC.17.8.5759

  23. Mustafa P, Niazi MB, Jahan Z, Samin G, Hussain A, Ahmed T, Naqvi SR (2020) PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. J Food Saf 40(1):e12725. https://doi.org/10.1111/jfs.12725

    Article  Google Scholar 

  24. López-Velázquez JC, Rodríguez-Rodríguez R, Espinosa-Andrews H, Qui-Zapata JA, García-Morales S, Navarro-López DE, Luna-Bárcenas G, Vassallo-Brigneti EC, García-Carvajal ZY (2019) Gelatin–chitosan–PVA hydrogels and their application in agriculture. J Chem Technol Biotechnol 94(11):3495–3504. https://doi.org/10.1002/jctb.5961

    Article  CAS  Google Scholar 

  25. Al-Emam E, Motawea AG, Janssens K, Caen J (2019) Evaluation of polyvinyl alcohol–borax/agarose (PVA–B/AG) blend hydrogels for removal of deteriorated consolidants from ancient Egyptian wall paintings. Herit Sci 7(1):22. https://doi.org/10.1186/s40494-019-0264-z

    Article  Google Scholar 

  26. Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K (2017) 3-Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer Composites in Electronics. Elsevier, p 27–128. https://doi.org/https://doi.org/10.1016/B978-0-12-809261-3.00003-6

  27. Tănase EE, Popa ME, Râpă M, Popa O (2015) Preparation and characterization of biopolymer blends based on polyvinyl alcohol and starch. Rom Biotechnol Lett 20(2):10306–10315

    Google Scholar 

  28. Siddaiah T, Ojha P, Kumar NO, Ramu C (2018) Structural, optical and thermal characterizations of PVA/MAA: EA polyblend films. Mater Res 21(5). https://doi.org/https://doi.org/10.1590/1980-5373-mr-2017-0987

  29. Yang M, Shi J, Xia Y (2018) Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films. Int J Biol Macromol 107:2686–2694. https://doi.org/10.1016/j.ijbiomac.2017.10.162

    Article  CAS  PubMed  Google Scholar 

  30. Wahid F, Wang F-P, Xie Y-Y, Chu L-Q, Jia S-R, Duan Y-X, Zhang L, Zhong C (2019) Reusable ternary PVA films containing bacterial cellulose fibers and ε-polylysine with improved mechanical and antibacterial properties. Colloids Surf B Biointerfaces 183:110486. https://doi.org/10.1016/j.colsurfb.2019.110486

    Article  CAS  PubMed  Google Scholar 

  31. Muresan-Pop M, Magyari K, Vulpoi A (2019) PVA and PVP Hydrogel Blends for Wound dressing: synthesis and characterisation. In: Advanced Materials Research. Trans Tech Publ, p 9–14

  32. Qureshi D, Behera KP, Mohanty D, Mahapatra SK, Verma S, Sukyai P, Banerjee I, Pal SK, Mohanty B, Kim D (2021) Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids Surf A Physicochem Eng Asp 613:126043. https://doi.org/10.1016/j.colsurfa.2020.126043

    Article  CAS  Google Scholar 

  33. Bhattarai RS, Das A, Alzhrani RM, Kang D, Bhaduri SB, Boddu SH (2017) Comparison of electrospun and solvent cast polylactic acid (PLA)/poly (vinyl alcohol)(PVA) inserts as potential ocular drug delivery vehicles. Mater Sci Eng C 77:895–903. https://doi.org/10.1016/j.msec.2017.03.305

    Article  CAS  Google Scholar 

  34. Hussein Y, Loutfy SA, Kamoun EA, El-Moslamy SH, Radwan EM, Elbehairi SEI (2021) Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: preparation and in vitro bioevaluation. Int J Biol Macromol 170:107–122. https://doi.org/10.1016/j.ijbiomac.2020.12.133

    Article  CAS  PubMed  Google Scholar 

  35. Tak H-Y, Yun Y-H, Lee C-M, Yoon S-D (2019) Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch. Carbohydr polym 208:261–268. https://doi.org/10.1016/j.carbpol.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  36. Sabaghi M, Maghsoudlou Y, Kashiri M, Shakeri A (2020) Evaluation of release mechanism of catechin from chitosan-polyvinyl alcohol film by exposure to gamma irradiation. Carbohydr Polym 230:115589. https://doi.org/10.1016/j.carbpol.2019.115589

    Article  CAS  PubMed  Google Scholar 

  37. Vecchi CF, Dos Santos RS, Bruschi ML (2020) Technological development of mucoadhesive film containing poloxamer 407, polyvinyl alcohol and polyvinylpyrrolidone for buccal metronidazole delivery. Ther Deliv 11(7):431–446. https://doi.org/10.4155/tde-2020-0031

    Article  CAS  PubMed  Google Scholar 

  38. Cautela MP, Moshe H, Sosnik A, Sarmento B, das Neves J (2019) Composite films for vaginal delivery of tenofovir disoproxil fumarate and emtricitabine. Eur J Pharm Biopharm 138:3-10. https://doi.org/https://doi.org/10.1016/j.ejpb.2018.02.001

  39. Gopalakrishnan S, Dathathri E, Thakur G, Koteshwara K (2017) Development of polyvinlyl alcohol-chitosan-hydroxypropylmethylcellulose based composite films for controlled drug delivery. Trends Biomater Artif Organs 31(3):97–101

    Google Scholar 

  40. Zhang X, Liu W, Yang D, Qiu X (2019) Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv Funct Mater 29(4):1806912. https://doi.org/10.1002/adfm.201806912

    Article  CAS  Google Scholar 

  41. Kumar A, Vimal A, Kumar A (2016) Why Chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol 91:615–622. https://doi.org/10.1016/j.ijbiomac.2016.05.054

    Article  CAS  PubMed  Google Scholar 

  42. Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087

    Article  CAS  PubMed  Google Scholar 

  43. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120:1181–1189. https://doi.org/10.1016/j.ijbiomac.2018.08.139

    Article  CAS  PubMed  Google Scholar 

  44. Gong Y, Tao L, Wang F, Liu W, Jing L, Liu D, Hu S, Xie Y, Zhou N (2015) Chitosan as an adjuvant for a Helicobacter pylori therapeutic vaccine. Mol Med Rep 12(3):4123–4132. https://doi.org/10.3892/mmr.2015.3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mohammed MA, Syeda J, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53. https://doi.org/10.3390/pharmaceutics9040053

    Article  CAS  PubMed Central  Google Scholar 

  46. Marques C, Som C, Schmutz M, Borges O, Borchard G (2020) How the lack of chitosan characterization precludes implementation of the Safe-by-design concept. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00165

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rufato KB, Galdino JP, Ody KS, Pereira AG, Corradini E, Martins AF, Paulino AT, Fajardo AR, Aouada FA, La Porta FA (2018) Hydrogels based on chitosan and chitosan derivatives for biomedical applications. In: Dinu-Pirvu C, Popa L, Ghica MV (eds) Hydrogels-smart materials for biomedical applications. IntechOpen, London

    Google Scholar 

  48. Amor G, Sabbah M, Caputo L, Idbella M, De Feo V, Porta R, Fechtali T, Mauriello G (2021) Basil essential oil: composition, antimicrobial properties, and microencapsulation to produce active Chitosan films for food packaging. Foods 10(1):121. https://doi.org/10.3390/foods10010121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Căprărescu S, Zgârian RG, Tihan GT, Purcar V, Eftimie Totu E, Modrogan C, Chiriac A-L, Nicolae CA (2020) Biopolymeric membrane enriched with chitosan and silver for metallic ions removal. Polymers 12(8):1792. https://doi.org/10.3390/polym12081792

    Article  CAS  PubMed Central  Google Scholar 

  50. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr polym 146:148–165. https://doi.org/10.1016/j.carbpol.2016.03.030

    Article  CAS  PubMed  Google Scholar 

  51. Juarez-Maldonado A, Ortega-Ortíz H, Pérez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A (2016) Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual 89:183–189. https://doi.org/10.5073/JABFQ.2016.089.023

    Article  CAS  Google Scholar 

  52. Long Q, Zhang Z, Qi G, Wang Z, Chen Y, Liu Z-Q (2020) Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater. ACS Sustain Chem Eng 8(6):2512–2522. https://doi.org/10.1021/acssuschemeng.9b07026

    Article  CAS  Google Scholar 

  53. Rahmaninia M, Rohi M, Hubbe MA, Zabihzadeh SM, Ramezani O (2018) The performance of chitosan with bentonite microparticles as wet-end additive system for paper reinforcement. Carbohydr polym 179:328–332. https://doi.org/10.1016/j.carbpol.2017.09.036

    Article  CAS  PubMed  Google Scholar 

  54. Thongchai K, Chuysinuan P, Thanyacharoen T, Techasakul S, Ummartyotin S (2020) Characterization, release, and antioxidant activity of caffeic acid-loaded collagen and chitosan hydrogel composites. J Mater Res Technol 9(3):6512–6520. https://doi.org/10.1016/j.jmrt.2020.04.036

    Article  CAS  Google Scholar 

  55. Augustine R, Rehman SRU, Ahmed R, Zahid AA, Sharifi M, Falahati M, Hasan A (2020) Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 156:153–170. https://doi.org/10.1016/j.ijbiomac.2020.03.207

    Article  CAS  PubMed  Google Scholar 

  56. Prakash J, Prema D, Venkataprasanna K, Balagangadharan K, Selvamurugan N, Venkatasubbu GD (2020) Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. Int J Biol Macromol 154:62–71. https://doi.org/10.1016/j.ijbiomac.2020.03.095

    Article  CAS  PubMed  Google Scholar 

  57. Ding H, Li B, Liu Z, Liu G, Pu S, Feng Y, Jia D, Zhou Y (2021) Nonswelling injectable chitosan hydrogel via UV crosslinking induced hydrophobic effect for minimally invasive tissue engineering. Carbohydr Polym 252:117143. https://doi.org/10.1016/j.carbpol.2020.117143

    Article  CAS  PubMed  Google Scholar 

  58. Chatterjee S, Hui PC-l, Siu WS, Kan C-W, Leung P-C, Wanxue C, Chiou J-C (2021) Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 168:163-174. https://doi.org/10.1016/j.ijbiomac.2020.12.035

  59. Shaw GS, Pandey PM, Yogalakshmi Y, Banerjee I, Al-Zahrani S, Anis A, Pal K (2017) Synthesis and assessment of novel gelatin-chitosan lactate cohydrogels for controlled delivery and tissue engineering applications. Polym Plast Technol Eng 56(13):1457–1467. https://doi.org/10.1080/03602559.2016.1276595

    Article  CAS  Google Scholar 

  60. Lai C (2014) Preparation chitosan lactate-hyaluronate sponges with unidirectional porous structure and their potential use as wound dressings. Int J Biosci Biochem Bioinforma 4(2):71–77. https://doi.org/10.7763/IJBBB.2014.V4.313

    Article  CAS  Google Scholar 

  61. Al Bakain RZ, Abulateefeh SR, Taha MO (2015) Synthesis and characterization of chitosan-lactate–phthalate and evaluation of the corresponding zinc-and aluminum-crosslinked beads as potential controlled release matrices. Eur Polym J 73:402–412. https://doi.org/10.1016/j.eurpolymj.2015.11.004

    Article  CAS  Google Scholar 

  62. Mahato KK, Yadav I, Singh R, Singh BN, Singh SK, Ray B, Kumar M, Misra N (2019) Polyvinyl alcohol/chitosan lactate composite hydrogel for controlled drug delivery. Mater Res Express 6(11):115408. https://doi.org/10.1088/2053-1591/ab4fbd

    Article  Google Scholar 

  63. Fan L, Yang H, Yang J, Peng M, Hu J (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr polym 146:427–434. https://doi.org/10.1016/j.carbpol.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  64. Figueroa-Pizano MD, Vélaz I, Martínez-Barbosa ME (2020) A Freeze-Thawing Method to Prepare Chitosan-Poly (vinyl alcohol) Hydrogels Without Crosslinking Agents and Diflunisal Release Studies. J Vis Exp (155). https://doi.org/10.3791/59636

  65. Sulaiman NA, Shaari NZK, Rahman NA (2016) Characterization of hybrid membranes from sol–gel method on PVA/Chitosan polymer blend. Int J Appl Chem 12(1):99–103

    Google Scholar 

  66. McLean M, Malik A (2012) Sol–Gel Materials in Analytical Microextraction. In: Pawliszyn J (ed) Comprehensive Sampling and Sample Preparation. Academic Press, Oxford, p 311–329. https://doi.org/https://doi.org/10.1016/B978-0-12-381373-2.00044-2

  67. Cui Z, Zheng Z, Lin L, Si J, Wang Q, Peng X, Chen W (2018) Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv Polym Technol 37(6):1917–1928. https://doi.org/10.1002/adv.21850

    Article  CAS  Google Scholar 

  68. Kocemba A, Mucha M (2017) Chitosan/poly (vinyl alcohol) hydrogels as controlled drug delivery systems. Prog Chem Appl Chitin Deriv 22:97–105. https://doi.org/10.15259/PCACD.22.09

  69. Nguyen N-T, Liu J-H (2013) Fabrication and characterization of poly (vinyl alcohol)/chitosan hydrogel thin films via UV irradiation. Eur Polym J 49(12):4201–4211. https://doi.org/10.1016/j.eurpolymj.2013.09.032

    Article  CAS  Google Scholar 

  70. Wang W, Narain R, Zeng H (2020) Chapter 10-Hydrogels. In: Narain R (ed) Polymer Science and Nanotechnology. Elsevier, pp 203–244. https://doi.org/10.1016/B978-0-12-816806-6.00010-8

  71. Keçili R, Yılmaz E, Ersöz A, Say R (2020) Chapter 12-Imprinted materials: from green chemistry to sustainable engineering. In: Szekely G, Livingston A (eds) Sustainable Nanoscale Engineering. Elsevier, pp 317–350. https://doi.org/10.1016/B978-0-12-814681-1.00012-6

  72. Yang W, Owczarek J, Fortunati E, Kozanecki M, Mazzaglia A, Balestra G, Kenny J, Torre L, Puglia D (2016) Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crops Prod 94:800–811. https://doi.org/10.1016/j.indcrop.2016.09.061

    Article  CAS  Google Scholar 

  73. Pathare PB, Opara UL, Al-Said FA-J (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Tech 6(1):36–60. https://doi.org/10.1007/s11947-012-0867-9

    Article  CAS  Google Scholar 

  74. Rodríguez-Tenreiro C, Alvarez-Lorenzo C, Concheiro Á, Torres-Labandeira J (2004) Characterization of cyclodextrincarbopol interactions by DSC and FTIR. J Therm Anal Calorim 77(2):403–411. https://doi.org/10.1023/b:jtan.0000038981.30494.f4

    Article  Google Scholar 

  75. Choudhary B, Paul SR, Nayak SK, Singh VK, Anis A, Pal K (2018) Understanding the effect of functionalized carbon nanotubes on the properties of tamarind gum hydrogels. Polym Bull 75(11):4929–4945. https://doi.org/10.1007/s00289-018-2300-7

    Article  CAS  Google Scholar 

  76. Schmidt WV (2018) Co-extruded plasticized pvc-based packaging films and method for its production. Google Patents

  77. Wu Z, Wu J, Peng T, Li Y, Lin D, Xing B, Li C, Yang Y, Yang L, Zhang L (2017) Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers 9(3):102. https://doi.org/10.3390/polym9030102

    Article  CAS  PubMed Central  Google Scholar 

  78. Khan ZU, Akram T, Naqvi SR, Haider SA, Kamran M, Muhammad N (2018) Automatic detection of plant diseases; utilizing an unsupervised cascaded design. In: 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, pp 339–346. https://doi.org/https://doi.org/10.1109/IBCAST.2018.8312246

  79. Onwude D, Hashim N, Janius R, Nawi N, Abdan K (2017) Color change kinetics and total carotenoid content of pumpkin as affected by drying temperature. Ital J Food Sci 29(1). https://doi.org/https://doi.org/10.14674/1120-1770/ijfs.v398

  80. Abbadessa A, Landín M, Blenke EO, Hennink WE, Vermonden T (2017) Two-component thermosensitive hydrogels: phase separation affecting rheological behavior. Eur Polym J 92:13–26. https://doi.org/10.1016/j.eurpolymj.2017.04.029

    Article  CAS  Google Scholar 

  81. Deshmukh K, Ahmad J, Hägg MB (2014) Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic polyvinyl alcohol. Ionics 20(7):957–967. https://doi.org/10.1007/s11581-013-1062-3

    Article  CAS  Google Scholar 

  82. Shankar S, Rhim J-W (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 82:116–123. https://doi.org/10.1016/j.foodhyd.2018.03.054

    Article  CAS  Google Scholar 

  83. Tidemand-Lichtenberg P, Dam JS, Andersen H, Høgstedt L, Pedersen C (2016) Mid-infrared upconversion spectroscopy. JOSA B 33(11):D28–D35. https://doi.org/10.1364/JOSAB.33.000D28

    Article  CAS  Google Scholar 

  84. Deshmukh K, Ahamed MB, Pasha SK, Deshmukh RR, Bhagat PR (2015) Highly dispersible graphene oxide reinforced polypyrrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv 5(76):61933–61945. https://doi.org/10.1039/C5RA11242G

    Article  CAS  Google Scholar 

  85. He Y, Miao J, Chen S, Zhang R, Zhang L, Tang H, Yang H (2019) Preparation and characterization of a novel positively charged composite hollow fiber nanofiltration membrane based on chitosan lactate. RSC Adv 9(8):4361–4369. https://doi.org/10.1039/C8RA09855G

    Article  CAS  Google Scholar 

  86. Choo K, Ching YC, Chuah CH, Julai S, Liou N-S (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9(8):644. https://doi.org/10.3390/ma9080644

    Article  CAS  PubMed Central  Google Scholar 

  87. Zhao P (2020) Advanced graphic communication, printing and packaging technology: proceedings of 2019 10th China academic conference on printing and packaging. Springer Nature, Singapore

  88. Alhosseini SN, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, Kargozar S, Jalali N (2012) Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed 7:25

    CAS  Google Scholar 

  89. Kharazmi A, Faraji N, Hussin RM, Saion E, Yunus WMM, Behzad K (2015) Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein J Nanotechnol 6(1):529–536. https://doi.org/10.3762/bjnano.6.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Geng T, Feng T, Ma Z, Cao Y, Chen Y, Tao S, Xiao G, Lu S, Yang B, Zou B (2019) Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale 11(11):5072–5079. https://doi.org/10.1039/C9NR00075E

    Article  CAS  PubMed  Google Scholar 

  91. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4, 4’-{1, 4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull 60(5):609–616. https://doi.org/10.1007/s00289-008-0896-8

    Article  CAS  Google Scholar 

  92. Raghu A, Gadaginamath G, Aminabhavi TM (2005) Synthesis and characterization of novel polyurethanes based on 1, 3-bis (hydroxymethyl) benzimidazolin-2-one and 1, 3-bis (hydroxymethyl) benzimidazolin-2-thione hard segments. J Appl Polym Sci 98(5):2236–2244. https://doi.org/10.1002/app.22434

    Article  CAS  Google Scholar 

  93. Raghu A, Gadaginamath G, Mallikarjuna N, Aminabhavi T (2006) Synthesis and characterization of novel polyureas based on benzimidazoline-2-one and benzimidazoline-2-thione hard segments. J Appl Polym Sci 100(1):576–583. https://doi.org/10.1002/app.23334

    Article  CAS  Google Scholar 

  94. Bhattarai N, Ramay HR, Chou S-H, Zhang M (2006) Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int J Nanomedicine 1(2):181. https://doi.org/10.2147/nano.2006.1.2.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan YN, Lee PP, Chen WN (2020) Dual Extraction of Crustacean and Fungal Chitosan from a Single Mucor circinelloides Fermentation. Fermentation 6(2):40. https://doi.org/10.3390/fermentation6020040

    Article  CAS  Google Scholar 

  96. Rasool BKA, Abu-Gharbieh EF, Al-Mahdy JJ, Nessa F, Ramzi HR (2010) Preparation and characterization of Aspirin-Chitosan complex: an attempt for its solubility and stability improvement. J Pharm Res 3(6):1349–1354

    Google Scholar 

  97. Nawrotek K, Modrzejewska Z, Paluch D, Zarzycki R, Rusak A (2015) Cytotoxicity of chitosan based thermo-sensitive hydrogels intended for nervous tissue engineering. Prog Chem Appl Chitin Deriv 20:222–235. https://doi.org/10.15259/PCACD.20.22

  98. Nematdoust S, Najjar R, Bresser D, Passerini S (2020) Partially oxidized cellulose grafted with polyethylene glycol mono-Methyl Ether (m-PEG) as electrolyte material for lithium polymer battery. Carbohydr Polym 240:116339. https://doi.org/10.1016/j.carbpol.2020.116339

    Article  CAS  PubMed  Google Scholar 

  99. Funaki C, Yamamoto S, Hoshina H, Ozaki Y, Sato H (2018) Three different kinds of weak CH⋯O=C inter-and intramolecular interactions in poly (ε-caprolactone) studied by using terahertz spectroscopy, infrared spectroscopy and quantum chemical calculations. Polymer 137:245–254. https://doi.org/10.1016/j.polymer.2018.01.025

    Article  CAS  Google Scholar 

  100. Guirguis OW, Moselhey MT (2011) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Natural Science 4:57–67. https://doi.org/10.4236/ns.2012.41009

    Article  CAS  Google Scholar 

  101. Peppas N, Tennenhouse D (2004) Semicrystalline poly (vinyl alcohol) films and their blends with poly (acrylic acid) and poly (ethylene glycol) for drug delivery applications. J Drug Deliv Sci Technol 14(4):291–297. https://doi.org/10.1016/S1773-2247(04)50050-3

    Article  CAS  Google Scholar 

  102. Hajeeassa KS, Hussein MA, Anwar Y, Tashkandi NY, Al-amshany ZM (2018) Nanocomposites containing polyvinyl alcohol and reinforced carbon-based nanofiller: a super effective biologically active material. Nanobiomedicine 5:1–12. https://doi.org/10.1177/1849543518794818

    Article  Google Scholar 

  103. Ma X-D, Qian X-F, Yin J, Xi H-A, Zhu Z-K (2002) Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature. J Colloid Interface Sci 252(1):77–81. https://doi.org/10.1006/jcis.2002.8377

    Article  CAS  PubMed  Google Scholar 

  104. Gupta S, Pramanik AK, Kailath A, Mishra T, Guha A, Nayar S, Sinha A (2009) Composition dependent structural modulations in transparent poly (vinyl alcohol) hydrogels. Colloids Surf B 74(1):186–190

    Article  CAS  Google Scholar 

  105. Hasda AM, Vuppaladadium SSR, Qureshi D, Prasad G, Mohanty B, Banerjee I, Shaikh H, Anis A, Sarkar P, Pal K (2020) Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. J Drug Deliv Sci Technol 60:102024. https://doi.org/10.1016/j.jddst.2020.102024

    Article  CAS  Google Scholar 

  106. Kodela SP, Pandey PM, Nayak SK, Uvanesh K, Anis A, Pal K (2017) Novel agar–stearyl alcohol oleogel-based bigels as structured delivery vehicles. Int J Polym Mater 66(13):669–678. https://doi.org/10.1080/00914037.2016.1252362

    Article  CAS  Google Scholar 

  107. Singh VK, Sagiri SS, Khade SM, Bhattacharya MK, Pal K (2015) Development and characterization of gelatin–polysaccharide based phase‐separated hydrogels for prevention of sexually transmitted diseases. J Appl Polym Sci 132(15). https://doi.org/10.1002/app.41785

  108. Lehti-Polojärvi M (2014) Electrical impedance tomography applied to stem cells in hydrogel scaffold

  109. El-Hefian EA, Nasef MM, Yahaya AH (2011) Preparation and characterization of chitosan/poly (vinyl alcohol) blended films: mechanical, thermal and surface investigations. E-J Chem 8(1):91–96. https://doi.org/10.1155/2011/969062

  110. Giteru SG, Ali MA, Oey I (2019) Solvent strength and biopolymer blending effects on physicochemical properties of zein-chitosan-polyvinyl alcohol composite films. Food Hydrocoll 87:270–286. https://doi.org/10.1016/j.foodhyd.2018.08.006

    Article  CAS  Google Scholar 

  111. Cabello SP, Ochoa NA, Takara EA, Mollá S, Compañ V (2017) Influence of Pectin as a green polymer electrolyte on the transport properties of Chitosan-Pectin membranes. Carbohydr polym 157:1759–1768. https://doi.org/10.1016/j.carbpol.2016.11.061

    Article  CAS  Google Scholar 

  112. Neto CdT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62(2):97–103. https://doi.org/10.1016/j.carbpol.2005.02.022

    Article  CAS  Google Scholar 

  113. Mabrouk M, Mostafa A, Oudadesse H, Mahmoud AA, El-Gohary MI (2014) Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceram Int 40(3):4833–4845. https://doi.org/10.1016/j.ceramint.2013.09.033

    Article  CAS  Google Scholar 

  114. Donawade DS, Raghu A, Gadaginamath GS (2006) Synthesis and antimicrobial activity of some new 1-substituted-3-pyrrolyl aminocarbonyl/oxadiazolyl/triazolyl/5-methoxy-2-methylindoles and benz [g] indoles. Indian J Chem 45B:689–696

    CAS  Google Scholar 

  115. Donawade DS, Raghu A, Muddapur U, Gadaginamath GS (2005) Chemoselective reaction of benz (g) indole based bisheterocycle dicarboxylate towards hydrazine hydrate: synthesis and antimicrobial activity of new triheterocycles-5-pyrrolylaminocarbonyl/mercaptooxadiazolyl/4-allyl-5-mercaptotriazolylmethoxy-1-furfuryl-2-methylbenz (g) indoles. Indian J Chem 44B:1470–1475

    CAS  Google Scholar 

  116. Nagaraja A, Jalageri MD, Puttaiahgowda YM, Reddy KR, Raghu AV (2019) A review on various maleic anhydride antimicrobial polymers. J Microbiol Methods 163:105650. https://doi.org/10.1016/j.mimet.2019.105650

    Article  CAS  PubMed  Google Scholar 

  117. Kawas G, Marouf M, Mansour O, Sakur AA (2018) Analytical methods of ciprofloxacin and its combinations review. Res J Pharm Tech 11(5):2139–2148. https://doi.org/10.5958/0974-360X.2018.00396.7

    Article  Google Scholar 

  118. Brar RK, Jyoti U, Patil RK, Patil HC (2020) Fluoroquinolone antibiotics: an overview. Adesh Univ J Med Sci Res 2(1):26–30. https://doi.org/10.25259/AUJMSR_12_2020

  119. Thai T, Salisbury BH, Zito PM (2021) Ciprofloxacin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; PMID: 30571075.

Download references

Acknowledgements

The authors are grateful for the infrastructural support provided by the National Institute of Technology, Rourkela, India. Also, we extend our gratitude to Dr. Slawomir Wilczynski, the Medical University of Silesia in Katowice, Poland, for improving the English language of our manuscript.

Funding

The present study has been conducted under the Indo-Belarus joint research program of the Department of Science and Technology, Government of India (Sanction order # DST/INT/BLR/P-25/2019) and under the grant of the Belarusian Republican Foundation for Fundamental Research #X19INDG-002. The authors would like to acknowledge the financial support received from the project sanctioned by the Department of Science and Technology, Government of India vide sanction order DST/TDT/DDP-29/2018(G), dated: 23.08.2019 for conducting the colorimetric studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samarendra Maji or Kunal Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, D., Pattanaik, S., Mohanty, B. et al. Preparation of novel poly(vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications. Polym. Bull. 79, 3253–3290 (2022). https://doi.org/10.1007/s00289-021-03653-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03653-6

Keywords

Navigation